关于a*算法的文章和代码有很多,这里是我整理的一份源代码,从别人的例子中修改过来的。在这个代码示例中加入了地图信息对寻址结果的影响,可以用在包含不同种类的地形信息的地图中寻址。由于代码可以调试,你可以看清楚每一个步骤是怎么做的,在这里我就不多做讲解了。
#include
#include
#define COLS 3 //地图
#define ROWS 3
#define TOTAL_TILES 9
#define TileNum( x, y ) ( y * COLS + x + 1 ) //判断是地图上的第几个格子
struct NODE {
long f,h,i; //在这里,我增加了一个i函数,主要用于地图信息
int g;
int x,y;
int NodeNum;
struct NODE *Parent;
struct NODE *Child[8]; /* a node may have upto 8+(NULL) children. */
struct NODE *NextNode; /* for filing purposes */
};
struct NODE *OPEN;
struct NODE *CLOSED;
int TileMap[TOTAL_TILES] = { /
1, 1, 1, /
1, 2, 1, /
1, 1, 1
};
//地图信息,目前由(0,0)点到(2,2)点的寻址结果是(0,0)->(1,1)->(2,2)。如果中间的那个2修改成4,表明不能行走或者是沼泽路面行走困难,寻址结果是(0,0)->(0,1)->(1,2)->(2,2)。
struct STACK {
struct NODE *NodePtr;
struct STACK *NextStackPtr;
};
struct STACK *Stack;
void Push(struct NODE *Node)
{
struct STACK *tmp;
tmp = ( struct STACK *)calloc(1,sizeof(struct STACK));
tmp->NodePtr = Node;
tmp->NextStackPtr = Stack->NextStackPtr;
Stack->NextStackPtr = tmp;
}
struct NODE *Pop()
{
struct NODE *tmp;
struct STACK *tmpSTK;
tmpSTK = Stack->NextStackPtr;
tmp = tmpSTK->NodePtr;
Stack->NextStackPtr = tmpSTK->NextStackPtr;
free( tmpSTK );
return( tmp );
}
struct NODE *CheckOPEN(int tilenum)
{
struct NODE *tmp = OPEN->NextNode;
while( tmp ) {
if( tmp->NodeNum == tilenum )
return( tmp );
else
tmp = tmp->NextNode;
}
return( NULL );
}
struct NODE *CheckCLOSED(int tilenum)
{
struct NODE *tmp = CLOSED->NextNode;
while( tmp ) {
if( tmp->NodeNum == tilenum )
return( tmp );
else
tmp = tmp->NextNode;
}
return( NULL );
}
void PropagateDown(struct NODE *Old)
{
int c,g;
struct NODE *Child, *Father;
g = Old->g;
for( c = 0; c < 8; c ++ ) {
if( ( Child = Old->Child[c] ) == NULL ) break;
if( g + 1 < Child->g ) {
Child->g = g + 1;
Child->f = Child->g + Child->h + Child->i;
//Child->f = Child->g + Child->h;
Child->Parent = Old;
Push( Child );
}
}
while( Stack->NextStackPtr != NULL ) {
Father = Pop();
for( c = 0; c < 8; c ++ ) {
if( ( Child = Father->Child[c] ) == NULL ) break;
if( Father->g + 1 < Child->g ) {
Child->g = Father->g + 1;
Child->f = Child->g + Child->h + Child->i;
//Child->f = Child->g + Child->h;
Child->Parent = Father;
Push( Child );
}
}
}
}
void Insert(struct NODE *Successor)
{
struct NODE *tmp1,*tmp2;
long f;
if(OPEN->NextNode == NULL) {
OPEN->NextNode = Successor;
return;
}
f = Successor->f;
tmp1 = OPEN;
tmp2 = OPEN->NextNode;
while( ( tmp2 != NULL ) && ( tmp2->f < f ) ) {
tmp1 = tmp2;
tmp2 = tmp2->NextNode;
}
Successor->NextNode = tmp2;
tmp1->NextNode = Successor;
}
void GenerateSucc(struct NODE *BestNode,long x, long y, long dx, long dy)
{
int g, TileNumS, c;
struct NODE *Old,*Successor;
TileNumS = TileNum( x, y );
//g = BestNode->g + TileMap[TileNumS];
g = BestNode->g + 1;
if( ( Old = CheckOPEN(TileNumS) ) != NULL ) {
for( c = 0; c < 8; c ++ ) {
if( BestNode->Child[c] == NULL ) break;
}
BestNode->Child[c] = Old;
if( g < Old->g ) {
Old->Parent = BestNode;
Old->g = g;
Old->f = g + Old->h + Old->i;
//Old->f = g + Old->h;
}
}
else if( ( Old = CheckCLOSED(TileNumS) ) != NULL ) {
for( c = 0; c < 8; c ++ ) {
if( BestNode->Child[c] == NULL ) break;
}
BestNode->Child[c] = Old;
if( g < Old->g ) {
Old->Parent = BestNode;
Old->g = g;
//Old->f = g + Old->h;
Old->f = g + Old->h + Old->i;
PropagateDown( Old );
}
}
else {
Successor = (struct NODE *)calloc(1,sizeof( struct NODE ));
Successor->Parent = BestNode;
Successor->NodeNum = TileNumS;
Successor->g = g;
//Successor->h = abs( x - dx ) + abs( y - dy );
Successor->h = ( x - dx ) * ( x - dx ) + ( y - dy ) * ( y - dy );
Successor->i = TileMap[Successor->NodeNum-1];
Successor->f = g + Successor->h + Successor->i;
//Successor->f = g + Successor->h;
Successor->x = x;
Successor->y = y;
Insert(Successor);
for( c = 0; c < 8; c ++ ) {
if( BestNode->Child[c] == NULL ) break;
}
BestNode->Child[c]=Successor;
}
}
void GenerateSuccessors(struct NODE *BestNode,long dx,long dy)
{
long x,y;
/* Upper-Left */
x = BestNode->x - 1; y = BestNode->y - 1;
if( x >= 0 && y >= 0 )
GenerateSucc(BestNode,x,y,dx,dy);
/* Upper */
x = BestNode->x; y = BestNode->y - 1;
if( y >= 0 )
GenerateSucc(BestNode,x,y,dx,dy);
/* Upper-Right */
x = BestNode->x + 1; y = BestNode->y - 1;
if( x < COLS && y >= 0 )
GenerateSucc(BestNode,x,y,dx,dy);
/* Right */
x = BestNode->x + 1; y = BestNode->y;
if( x < COLS )
GenerateSucc(BestNode,x,y,dx,dy);
/* Lower-Right */
x = BestNode->x + 1; y = BestNode->y + 1;
if( x < COLS && y < ROWS )
GenerateSucc(BestNode,x,y,dx,dy);
/* Lower */
x = BestNode->x; y = BestNode->y + 1;
if( y < ROWS )
GenerateSucc(BestNode,x,y,dx,dy);
/* Lower-Left */
x = BestNode->x - 1; y = BestNode->y + 1;
if( x >= 0 && y < ROWS )
GenerateSucc(BestNode,x,y,dx,dy);
/* Left */
x = BestNode->x - 1; y = BestNode->y;
if( x >= 0 )
GenerateSucc(BestNode,x,y,dx,dy);
}
struct NODE *ReturnBestNode(void)
{
struct NODE *tmp;
tmp = OPEN->NextNode;
OPEN->NextNode = tmp->NextNode;
tmp->NextNode = CLOSED->NextNode;
CLOSED->NextNode = tmp;
return(tmp);
}
struct NODE *FindPath(long sx, long sy, long dx, long dy)
{
struct NODE *Node, *BestNode;
int TileNumDest = TileNum(dx,dy);
OPEN = (struct NODE *)calloc(1,sizeof( struct NODE ));
CLOSED = (struct NODE *)calloc(1,sizeof( struct NODE ));
Node=(struct NODE *)calloc(1,sizeof( struct NODE ));
Node->NodeNum = TileNum(sx,sy);
Node->g = 0;
//Node->h = abs( sx - dx ) + abs( sy - dy );
Node->h = ( sx - dx ) * ( sx - dx ) + ( sy - dy ) * ( sy - dy );
Node->i = TileMap[Node->NodeNum-1];
Node->f = Node->g + Node->h + Node->i;
//Node->f = Node->g + Node->h;
Node->x = sx;
Node->y = sy;
OPEN->NextNode=Node;
for (;;) {
BestNode = (struct NODE *)ReturnBestNode();
if( BestNode->NodeNum == TileNumDest ) break;
GenerateSuccessors( BestNode, dx, dy );
}
return BestNode;
};
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow)
{
Stack=( struct STACK *)calloc(1,sizeof(struct STACK));
struct NODE * Path = FindPath( 0, 0, 2, 2 );
return 0;
}
虽然用上面的算法可以找到目的地址,但是目前有几个问题:
1)效率问题:当起点到终点的路径不存在的时候,a*的花费比较大,应该加如预寻址算法或者改进当前算法。
2)当地图中不能走的地方边边角角较多的时候,寻址的结果中折线较多,此时可以寻求其次优解,将路径美化。
3)寻址方向目前有8个,对应于2D的八个方向,感觉应该能扩展到3D空间当中,做一个3D的a*寻址。3D寻址的时候应该是26个方向。