python3.x编程模板总结

刚接触Python3版本的小伙伴们,编程时会对于Python中各种数据结构如:array、list、dict、set以及字符串str操作都不太熟悉。同时类似于Python网络编程、文件读取、数据库连接以及协程这些编程模板基本也都是固定的,本文便就这些方面进行总结,希望让大家进行Python3编程时能够更加的便捷,可以直接复制粘贴而不用每次都手敲了,好下面进入正题啦!

一、list各种操作

1、list和array之间相互转换及遍历

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from numpy import *
#python 中list和array之间的相互转换以及list和array的遍历

testList=[[1,2,3],[4,5,6]]
#将list转化成array
testArray=array(testList)
for i in range(testArray.shape[0]):
    for j in range(testArray.shape[1]):
        print(testArray[i,j],' ',end='')
    print()

print()
#将array转化成list
toList=testArray.tolist()
for i in range(len(toList)):
    for word in toList[i]:
        print(word,' ',end='')
    print()

2、查找返回list中出现次数最多的那个元素

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#查询list中出现次数最多的元素
def top(list):
    s=set(list)
    d={}
    for i in s:
        d[i]=list.count(i)
    print('下面输出的是前k个字典:',end='')
    print(d)
    list1=[]
    for i in d.values():
        list1.append(i)

    ma=max(list1)
    key_max=get_keys(d,ma)
    string=key_max[0]
    return string

#get_keys实现已知dict的value返回key
def get_keys(d,value):
    return [k for k,v in d.items() if v==value]

if __name__ == '__main__':
    listTest=[1,1,1,2,2,3,4,5,5,6,6,6,6,6,7]
    s=top(listTest)
    print('出现次数最多的元素: ', s)

二、array各种操作

1、Python3中如何自定义结构化数组

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from numpy import *
import pandas as pd

#通过下面这种方式定义结构数组,自定义结构数组
dtypes={'name':'s32','age':'i','weight':'f'}
mydata=pd.DataFrame([['zhang',32,65.5],['wang',24,55.2]],columns=['name','age','weight'])
print(mydata)
t=mydata.shape
for i in mydata.columns:
    print('')
    for j in range(mydata.ndim):
        print(' '+str(mydata[i][j]),end='')

2、array切片操作

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from numpy import *

a=arange(10)**3
for element in a.flat:
    print(' %d' %element,end='')
print('')

for i in range(a.size):
    print(' %d' %a[i],end='')
print('')
print(a[2:5])  #数组的切片处理
a[:6:2]=-1000  #省略的位置代表0
print(a)
m=a[: :-1]  #将一维数组反转
print(m)

三、dict各种操作

1、如何根据dict字典的value反去除key

def get_keys(d,value):
    return [k for k,v in d.items() if v==value]

2、dict中存取key、value各种函数使用

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import operator

a_dict={1:{'name':'Mary'},2:'python',3:'google','email':'qq.com'}
print(a_dict)
print(a_dict.items())

#字典的三个函数 keys()、values()、items()
print(a_dict.keys())
print(a_dict.values())
print(a_dict.items())

#两种遍历dict中key的方式
for k in a_dict.keys():
    print(k)
for k in a_dict:
    print(k)

print()

#两种遍历dict中value的方式
for v in a_dict.values():
    print(v)
for k in a_dict.keys():
    print(a_dict[k])

print()

#Python字典调用items()函数以列表返回可遍历的(键,值)元组数组
for k,v in a_dict.items():
    print(str(k)+' : '+str(v))
for k in a_dict:
    print(str(k)+' : '+str(a_dict[k]))

print()
#get函数的使用,用来取出dict的value的
for k in a_dict.keys():
    print(a_dict.get(k))

print('字典的存储的数据量为: %d' %len(a_dict))

四、set各种操作

1、set声明操作集合和list之间转化

import numpy as np
import operator

#set中只存储key,不存储value,并且key不能够重复

#下面给出Python中声明set的方法
s1=set([])
while len(s1)!=5:
    a=np.random.randint(0,10)
    s1.add(a)
print(s1)

s2=set([])
for i in range(10):
    s2.add(i)
print(s2)

#两个set进行相减操作
s3=s2-s1
print(s3)

#将set转化成list
list1=list(s1)
list2=list(s3)
for i in range(len(list1)):
    print(list1[i])
for j in range(len(list2)):
    print(list2[j])

五、字符串操作

1、Python中字符串相等判断

str1='csdn'
str2='csdn'
#Python中和Java不同,字符串相等直接使用‘==’
if str1==str2:
    print('相等')
else:
    print('不相等')

2、将文本中有效单词取出,过滤掉空格和其他符号

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import re
#在表示完整的文件路径需要在前面加 r 
file_name = r'E:\python\Python_project\machine learning\bayes\email\ham\23.txt'

lines_count = 0
words_count = 0
chars_count = 0
words_dict  = {}
lines_list  = []

with open(file_name, 'r') as f:
    print(f)
    for line in f:
        #print('line: ',line)
        lines_count = lines_count + 1
        chars_count  = chars_count + len(line)
        #这里的findall函数特殊
        match = re.findall(r'[^a-zA-Z0-9]+', line)
        #print('match: ',match)
        for i in match:
            # 只要英文单词,删掉其他字符
            line = line.replace(i, ' ')       
        #split()返回的是 list
        lines_list = line.split()
        #下面的i表示的是单词,所以字典的key是单词,value是单词出现的次数
        for i in lines_list:
            if i not in words_dict:
                words_dict[i] = 1
            else:
                words_dict[i] = words_dict[i] + 1

print('words_count is %d' %len(words_dict))
print('lines_count is %d' %lines_count)
print('chars_count is %d' %chars_count)

print(words_dict.keys())
print(words_dict.values())
for k,v in words_dict.items():
    print(k,v)

六、json使用

1、Python对象和json对象相互转化

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import json

#python对象--->json对象  json.dumps(python对象)
#Python对象<---json对象  json.loads(json对象)
#下面是字典类型的对象和json对象之间的互相转化
d = dict(name='Bob', age=20, score=88)
data = json.dumps(d)
print('JSON Data is a str:', data)
reborn = json.loads(data)
print(reborn)

2、利用一个函数定制json序列化

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import json

#Python中类对象<--->json对象
#利用一个函数定制json序列化
class Student(object):

    def __init__(self, name, age, score):
        self.name = name
        self.age = age
        self.score = score

    def __str__(self):
        return 'Student object (%s, %s, %s)' % (self.name, self.age, self.score)

s = Student('Bob', 20, 88)
std_data = json.dumps(s, default=lambda obj: obj.__dict__)
print('Dump Student:', std_data)
rebuild = json.loads(std_data, object_hook=lambda d: Student(d['name'], d['age'], d['score']))
print(rebuild)

七、读取文件操作

1、一次性读取所有文件内容到内存:read()

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from datetime import datetime

#read函数对于文件过大时,会导致内存爆炸的!
with open('test1.txt','r') as f:
    s=f.read()
    print('open for read')
    print(s)

2、每次读取一行文件内容:readline()

l=[]
try:
    f=open('test2_data.txt','r')
    s=f.readline()
    #每次读取一行文件内容,循环读取
    while len(s)!=0:
        list1=[]
        list1=s.split('\t')
        #将读取的文件内容保存到list中
        l.append(list1)
        s=f.readline()
    #print(l)
except:
    if f:
        f.close()

3、一次性读取所有文件内容但是按行返回list:readlines() 很好用

    f=open('testSet.txt')
    for line in f.readlines():
        lineList=line.strip().split()
        print(lineList)

4、向文件中写信息

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from datetime import datetime
with open('test.txt', 'w') as f:
    f.write('今天是 ')
    f.write(datetime.now().strftime('%Y-%m-%d'))

八、数据库操作

1、Python数据库的连接模板

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#导入mysql驱动
import mysql.connector

#连接mysql数据库
conn=mysql.connector.connect(user='root',password='',db='test')
cur=conn.cursor()

#查询多条记录
info=cur.fetchmany(5)
for ii in info:
    print(ii)

#运行查询的另一种方式
cur.execute("select * from user")
values=cur.fetchall()
print(values)
#提交事务
conn.commit()
conn.close()
cur.close()

九、TCP网络通讯

1、服务器端server

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import socket,threading,time

def tcplink(socket,addr):
    print('Accept new connection from %s:%s...' %addr)
    sock.send(b'Welcome!')
    while True:
        data=sock.recv(1024)
        time.sleep(1)
        if not data or data.decode('utf-8')=='exit':
            break
        sock.send(('Hello,%s!' % data.decode('utf-8')).encode('utf-8'))
    sock.close()
    print('Connection from %s:%s closed' %addr)

if __name__=='__main__':
    # 创建一个socket:
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

    #监听窗口
    #其中IP地址和端口号使用tuple的形式
    s.bind(('127.0.0.1',9999))

    #开始监听端口
    s.listen(5)
    print('waiting for connection...')

    #永久循环接受客服端连接
    while  True:
        #接受一个新连接
        sock,addr=s.accept()
        #创建新线程处理TCP连接
        t = threading.Thread(target=tcplink, args=(sock, addr))
        t.start()

2、客服端client

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import socket

# 创建一个socket:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#建立连接
s.connect(('127.0.0.1',9999))

#接受欢迎消息
print(s.recv(1024).decode('utf-8'))
for data in [b'Michael',b'Tracy',b'Sarah']:
    s.send(data)
    print(s.recv(1024).decode('utf-8'))
s.send(b'exit')
s.close()

十、Python协程async

1、Python中协程比使用多线程更高效

如是Python3.5及以上版本,代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import asyncio

async def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader,writer=await connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8'))
    await writer.drain()
    while True:
        line=await reader.readline()
        if line== b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

如果是Python3.4的版本,代码如下

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import asyncio

@asyncio.coroutine
def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = yield from connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8'))
    yield from writer.drain()
    while True:
        line = yield from reader.readline()
        if line == b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    # Ignore the body, close the socket
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

以上内容便是Python3.x常用数据结构和常用模板的总结,当然并不可能很全啦,后期如果有比较好的模板还会继续更新,小伙伴们如果有比较好的模板也欢迎添加分享!

你可能感兴趣的:(python)