- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- 电影智能推荐系统
风又起而叶落地
pandas
电影智能推荐系统背景介绍人们经常会在视频平台上观看影片,有时目标明确,想要观看某部电影,但有时仅仅是随机搜寻。如果视频平台可以利用基于物品的智能推荐系统,有效地从用户对其观看过的电影的评分中挖掘数据,便可以根据用户偏好的电影个性化地推荐更多类似的电影,优化用户体验,提高用户粘性,创造额外收入。分析步骤读取数据数据分析合并电影数据和评分数据计算每部电影的评分均值计算每部电影的“评分次数”创建数据透视
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- 计算机毕业设计之jsp影视推荐系统
我的微信bishe911
课程设计java开发语言mysqljsp
随着信息化时代的到来,网络系统都趋向于智能化、系统化,影视推荐系统也不例外,但目前国内的很多行业仍使用人工管理,影视信息量也越来越庞大,人工管理显然已无法应对时代的变化,而影视推荐系统能很好地解决这一问题,轻松的对影视信息进行评分,既能提高用户对影视推荐的了解,又能快捷的查看影视信息,取代人工管理是必然趋势。本影视推荐系统以SSM作为框架,B/S模式以及MySql作为后台运行的数据库。本系统主要包
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 《数据孤岛:AI模型训练之殇,精度与泛化的双重困境》
人工智能深度学习
在人工智能飞速发展的当下,数据就是模型的“燃料”。从医疗影像诊断到智能交通调度,从电商推荐系统到金融风险预测,AI模型的精准度与泛化能力,决定了其在实际应用中的价值。然而,一个棘手的问题正阻碍着AI前行的步伐——数据孤岛。数据孤岛,是指在组织内部或不同组织之间,由于系统、管理或流程的原因,数据被孤立存储在不同的数据库、应用程序或部门中,彼此之间缺乏有效的连接和整合。据权威机构调研,在高度信息化的企
- 基于python的音乐推荐系统设计与实现
wu_fei_yu
python开发语言
点我完整下载:基于python的音乐推荐系统设计与实现.docx基于python的音乐推荐系统设计与实现DesignandImplementationofaMusicRecommendationSystembasedonPython目录目录2摘要3关键词3
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 推荐系统的未来发展方向:大模型的主流化
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《推荐系统的未来发展方向:大模型的主流化》关键词:推荐系统,大模型,深度学习,人工智能,未来趋势摘要:本文深入探讨了推荐系统的发展历程及其在当前人工智能时代的重要性。重点分析了深度学习在大模型中的应用,探讨了大模型的主流化趋势及其面临的挑战。通过案例研究,展示了大模型在实际推荐系统中的应用效果,并对未来的发展方向进行了展望。目录大纲推荐系统的概述1.1推荐系统的发展历程1.2推荐系统的基本架构深度
- 计算广告(一)
爱学习的菜鸟罢了
搜广推人工智能
计算广告学是一个十分庞大的学科,里面涵盖了自然语言处理、机器学习、推荐系统等众多研究方向。而且广告作为互联网行业的三大盈利模式(广告、电商、游戏)之一,也是这三大模式中最有技术含量的,计算广告学一直都吸引着无数学术界/工业界的精英投入其中(ps:计算广告学也是机器学习在商业界最成功的应用之一)。行业分类例子盈利搜索引擎Google百度广告社交网络腾讯facebook广告增值服务游戏电商网站亚马逊阿
- 使用 pgvector 将 PostgreSQL 与语义搜索/RAG 集成的教程
azzxcvhj
postgresql人工智能数据库python
技术背景介绍在大语言模型(LLMs)和语义搜索的兴起中,结合结构化的关系型数据库(如PostgreSQL)进行增强型查询变得越来越有价值。这种方法常用于RAG(Retrieval-AugmentedGeneration)场景,例如FAQ问答、文档检索、推荐系统等。pgvector是用于PostgreSQL的一个扩展,它支持稠密向量的存储和操作。通过pgvector,可以将嵌入向量直接存储在数据库中
- 面向 Data+AI 的统一数据目录探索 | Data Infra NO.22 回顾(含资料发布)
数据库
随着生成式人工智能(GenerativeAI)的崛起,从图像生成、自然语言处理到个性化推荐系统,生成式AI技术正迅速改变着各行各业的面貌。而在这场变革背后,数据的管理和治理显得尤为重要。对于企业来说,数据不仅是基础资源,更是构建AI应用和增强业务能力的关键。ApacheGravitino(incubating)与Databend作为数据领域两个知名的开源项目,正通过各自的创新技术和实践,为数据管理
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- 基于多模态信息抽取的菜品知识图谱构建 思维导图-java架构
用心去追梦
java架构开发语言
构建一个基于多模态信息抽取的菜品知识图谱,特别是在Java架构下的实现,可以按照以下结构来组织思维导图的内容。这个思维导图将帮助理解从数据获取、处理到知识图谱构建的关键步骤,并且涵盖技术选型和系统设计。思维导图结构1.项目背景知识图谱的意义提升搜索体验推荐系统优化菜品知识图谱的目标食材关联菜系分类健康饮食建议2.多模态数据收集文本数据源美食博客和论坛配方网站图像数据源社交媒体图片餐厅菜单照片视频数
- Spark GraphX原理与代码实例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
SparkGraphX原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着互联网和大数据技术的迅猛发展,社交网络、推荐系统、生物信息学、图分析等领域对图计算的需求日益增长。传统的图处理技术如GraphLab、Neo4j等,虽然功能强大,但往往存在扩展性差、易用性低、计算效率不足等问题。为了解决这些问题,A
- 基于大数据的商品推荐系统的设计与实现
JAVA编码选手
个人作品案例展示分享大数据springbootmavenvue.js后端javascript
摘要在当今互联网时代,随着电子商务的快速发展,各行各业都面临着海量数据的挑战和机遇,电子商务极大地改变了商业运作的方式,为消费者和企业带来了前所未有的便利和机会。该毕业设计以京东商品数据为来源,设计与实现基于大数据的电商商品推荐系统。通过对电商商品数据进行深度挖掘,可以发现消费趋势、产品热门度、价格以及地区差异等信息,为市场营销和产品策略提供重要参考。利用Java语言及SpringBoot框架、M
- 基于hadoop的协同过滤算法电影推荐系统的设计与实现
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于hadoop的协同过滤算法电影推荐系统的设计与实现文章目录基于hadoop的协同过滤算法电影推荐系统的设计与实现1.背景介绍1.1电影推荐系统的重要性1.2传统推荐系统的缺陷1.3Hadoop在大数据处理中的作用2.核心概念与联系2.1协同过滤算法2.2基于用户的协同过滤2.3基于项目的协同过滤2.4Hadoop在协同过滤算法中的应用3.核心算法原理具体操作步骤3.1基于用户的协同过滤算法流程
- hive电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设计算机毕业设计hivespringboot爬虫
hive电影数据分析Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示+[手把手视频教程和开发文档]【功能介绍】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.MR数据清洗data.csv4.Hive汇总处理,将Hive处理的结果数据保存到本地Mysql数据库中5.Springboot+Vu
- hadoop电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
计算机毕业设计毕业设计大数据毕设hadoopspringboot爬虫
全套视频教程全套开发文档hadoop电影数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示【Hadoop项目】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.data.csv数据清洗4.MR数据汇总处理,将Reduce的结果数据保存到本地Mysql数据库中5.Springboot
- spark电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设计算机毕业设计sparkspringboot爬虫大数据电影推荐电影分析
spark电影数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示+[手把手视频教程和开发文档【功能介绍】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.MR数据清洗data.csv4.Spark汇总处理,将Spark处理的结果数据保存到本地Mysql数据库中5.Springboo
- hadoop图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析hadoopspringboot爬虫
hadoop图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图
- 基于深度学习的推荐系统构建:Movielens 数据集
fresh的转码之路
深度学习人工智能机器学习推荐算法
基于深度学习的推荐系统构建:Movielens数据集依赖环境代码语言:python3.11.5开发平台:pycharmtensorflow版本:2.18.0MovieLen1M数据及简介MovieLens1M数据集包含包含6000个用户在近4000部电影上的100万条评分,也包括电影元数据信息和用户属性信息。下载地址为:http://files.grouplens.org/datasets/mov
- 17-7 向量数据库之野望7 - PostgreSQL 和pgvector
拉达曼迪斯II
AIGC学习数据库管理工具AI创业数据库postgresql人工智能机器学习AIGC搜索引擎
PostgreSQL是一款功能强大的开源对象关系数据库系统,它已将其功能扩展到传统数据管理之外,通过pgvector扩展支持矢量数据。这一新增功能满足了对高效处理高维矢量数据日益增长的需求,这些数据通常用于机器学习、自然语言处理(NLP)和推荐系统等应用。https://github.com/mazzasaverio/find-your-opensource-project什么是pgvector?
- 如何使用Java爬虫获取阿里巴巴热卖商品推荐:代码示例与实践指南
小爬虫程序猿
Javajava爬虫python
在电商领域,获取热卖商品推荐对于商家和开发者来说至关重要。阿里巴巴提供了热卖商品推荐API接口,能够根据消费者的购买历史、浏览行为、搜索习惯等数据,自动推荐符合其需求的商品。以下将详细介绍如何使用Java爬虫获取阿里巴巴热卖商品推荐,并提供相关的代码示例。一、阿里巴巴热卖商品推荐API接口简介阿里巴巴热卖商品推荐API接口是一种基于人工智能算法的推荐系统,能够根据消费者的购买历史、浏览行为、搜索习
- 美食推荐系统 协同过滤余弦函数推荐美食 Springboot Vue Element-UI前后端分离
小盼江
源码课题设计毕业设计美食springbootvue.js
个性化美食推荐系统协同过滤余弦函数推荐美食Echart数据统计SpringbootVueElement-UI前后端分离【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.推荐美食列表展示,使用协同过滤余弦函数根据用户的评论,收藏
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- python爬虫 django搜索修改更新数据_Django+python+BeautifulSoup垂直搜索爬虫
weixin_39897070
python爬虫django搜索修改更新数据
使用python+BeautifulSoup完成爬虫抓取特定数据的工作,并使用Django搭建一个管理平台,用来协调抓取工作。因为自己很喜欢Djangoadmin后台,所以这次用这个后台对抓取到的链接进行管理,使我的爬虫可以应对各种后期的需求。比如分时段抓取,定期的对已经抓取的地址重新抓取。数据库是用python自带的sqlite3,所以很方便。这几天正好在做一个电影推荐系统,需要些电影数据。本文
- 基于微信小程序的设计—美食推荐系统设计(附论文+源码)
picking_bananas
微信小程序美食小程序毕业设计
关键词:微信小程序;美食管理;美食推荐;毕业;我们专注于软件开发工程领域,熟练掌握多种开发技术,包括基于SpringBoot、Vue.js、SSM框架的应用开发,以及针对AndroidAPP和微信小程序的开发。(具体流程参见文章最后段落)微信小程序是一种基于微信平台的轻量级应用程序,具有易于开发、易于传播、易于使用等特点。美食推荐系统则是一种通过推荐美食来提高用户的美食体验的应用程序。基于微信小程
- 毕业设计--基于Python+Django框架的豆瓣图书评论推荐可视化系统
源码空间站11
python课程设计django毕业设计人工智能后端豆瓣图书爬虫
1.系统概述本系统是一个基于Python和Django框架的豆瓣图书评论推荐可视化系统。通过收集并分析豆瓣图书的评论数据,结合可视化技术,系统能够为用户推荐感兴趣的图书,并以直观的方式展示图书评论的统计信息和分析结果。2.项目目标本项目的主要目标是设计并实现一个豆瓣图书评论推荐系统,具体目标如下:图书评论数据采集与存储:系统能够从豆瓣平台抓取图书评论数据,并将其存储在本地数据库中(db.sqlit
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分