在看 ladder network(https://arxiv.org/pdf/1507.02672v2.pdf) 时初次遇到batch normalization(BN). 文中说BN能加速收敛等好处,但是并不理解,然后就在网上搜了些关于BN的资料。
看了知乎上关于深度学习中 Batch Normalization为什么效果好? 和CSDN上一个关于Batch Normalization 的学习笔记,总算对BN有一定的了解了。这里只是总结一下BN的具体操作流程,对于BN更深层次的理解,为什么要BN,BN是否真的有效也还在持续学习和实验中。
BN就是在神经网络的训练过程中对每层的输入数据加一个标准化处理。
传统的神经网络,只是在将样本xx输入输入层之前对xx进行标准化处理(减均值,除标准差),以降低样本间的差异性。BN是在此基础上,不仅仅只对输入层的输入数据xx进行标准化,还对每个隐藏层的输入进行标准化。
标准化后的xx乘以权值矩阵Wh1Wh1加上偏置bh1bh1得到第一层的输入wh1x+bh1wh1x+bh1,经过激活函数得到h1=ReLU(wh1x+bh1)h1=ReLU(wh1x+bh1),然而加入BN后, h1h1的计算流程如虚线框所示:
1. 矩阵xx先经过Wh1Wh1的线性变换后得到s1s1 (注:因为减去batch的平均值μBμB后,bb的作用会被抵消掉,所提没必要加入bb了)
将s1s1再减去batch的平均值μBμB,并除以batch的标准差σ2B+ϵ−−−−−√σB2+ϵ得到s2s2. ϵϵ是为了避免除数为0时所使用的微小正数。
其中μB=1m∑mi=0Wh1xiμB=1m∑i=0mWh1xi
σ2B=1m∑mi=0(Wh1xi−μB)2σB2=1m∑i=0m(Wh1xi−μB)2
(注:由于这样做后s2s2基本会被限制在正态分布下,使得网络的表达能力下降。为解决该问题,引入两个新的参数:γγ,ββ. γγ和ββ是在训练时网络自己学习得到的。)
将s2s2乘以γγ调整数值大小,再加上ββ增加偏移后得到s3s3
s3s3经过激活函数后得到h1h1
需要注意的是,上述的计算方法用于在训练过程中。在测试时,所使用的μμ和σ2σ2是整个训练集的均值μpμp和方差σ2pσp2. 整个训练集的均值μpμp和方差σ2pσp2的值通常是在训练的同时用移动平均法来计算的.
在看具体代码之前,先来看两个求平均值函数的用法:
mean, variance = tf.nn.moments(x, axes, name=None, keep_dims=False)
这个函数的输入参数x表示样本,形如[batchsize, height, width, kernels]
axes表示在哪个维度上求解,是个list
函数输出均值和方差
'''
batch = np.array(np.random.randint(1, 100, [10, 5]))开始这里没有定义数据类型,batch的dtype=int64,导致后面sess.run([mm,vv])时老报InvalidArgumentError错误,原因是tf.nn.moments中的计算要求参数是float的
'''
batch = np.array(np.random.randint(1, 100, [10, 5]),dtype=np.float64)
mm, vv=tf.nn.moments(batch,axes=[0])#按维度0求均值和方差
#mm, vv=tf.nn.moments(batch,axes=[0,1])求所有数据的平均值和方差
sess = tf.Session()
print batch
print sess.run([mm, vv])#一定要注意参数类型
sess.close()
输出结果:
[[ 53. 9. 67. 30. 69.]
[ 79. 25. 7. 80. 16.]
[ 77. 67. 60. 30. 85.]
[ 45. 14. 92. 12. 67.]
[ 32. 98. 70. 98. 48.]
[ 45. 89. 73. 73. 80.]
[ 35. 67. 21. 77. 63.]
[ 24. 33. 56. 85. 17.]
[ 88. 43. 58. 82. 59.]
[ 53. 23. 34. 4. 33.]]
[array([ 53.1, 46.8, 53.8, 57.1, 53.7]), array([ 421.09, 896.96, 598.36, 1056.69, 542.61])]
ema = tf.train.ExponentialMovingAverage(decay) 求滑动平均值需要提供一个衰减率。该衰减率用于控制模型更新的速度,ExponentialMovingAverage 对每一个(待更新训练学习的)变量(variable)都会维护一个影子变量(shadow variable)。影子变量的初始值就是这个变量的初始值,
shadow_variable=decay×shadow_variable+(1−decay)×variable
由上述公式可知, decay 控制着模型更新的速度,越大越趋于稳定。实际运用中,decay 一般会设置为十分接近 1 的常数(0.99或0.999)。为了使得模型在训练的初始阶段更新得更快,ExponentialMovingAverage 还提供了 num_updates 参数来动态设置 decay 的大小:
decay=min{decay,1+num_updates10+num_updates}decay=min{decay,1+num_updates10+num_updates}
对于滑动平均值我是这样理解的(也不知道对不对,如果有觉得错了的地方希望能帮忙指正)
假设有一串时间序列 {a1,a2,a3,⋯,at,at+1,⋯,}{a1,a2,a3,⋯,at,at+1,⋯,}
t时刻的平均值为mvt=a1+a2+⋯+attmvt=a1+a2+⋯+att
t+1时刻的平均值为mvt+1=a1+a2+⋯+at+at+1t+1=tmvt+at+1t+1=tt+1mvt+1t+1at+1mvt+1=a1+a2+⋯+at+at+1t+1=tmvt+at+1t+1=tt+1mvt+1t+1at+1
令decay=tt+1tt+1, 则mvt+1=decay∗mvt+(1−decay)∗at+1mvt+1=decay∗mvt+(1−decay)∗at+1
import tensorflow as tf
graph=tf.Graph()
with graph.as_default():
w = tf.Variable(dtype=tf.float32,initial_value=1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)
with tf.control_dependencies([update]):
ema_op = ema.apply([w])#返回一个op,这个op用来更新moving_average #这句和下面那句不能调换顺序
ema_val = ema.average(w)#此op用来返回当前的moving_average,这个参数不能是list
with tf.Session(graph=graph) as sess:
sess.run(tf.initialize_all_variables())
for i in range(3):
print i
print 'w_old=',sess.run(w)
print sess.run(ema_op)
print 'w_new=', sess.run(w)
print sess.run(ema_val)
print '**************'
输出:
0
w_old= 1.0
None
w_new= 2.0#在执行ema_op时先执行了对w的更新
1.1 #0.9*1.0+0.1*2.0=1.1
**************
1
w_old= 2.0
None
w_new= 3.0
1.29 #0.9*1.1+0.1*3.0=1.29
**************
2
w_old= 3.0
None
w_new= 4.0
1.561 #0.9*1.29+0.1*4.0=1.561
关于加入了batch Normal的对mnist手写数字分类的nn网络完整代码:
import tensorflow as tf
#import input_data
from tqdm import tqdm
import numpy as np
import math
from six.moves import cPickle as pickle
#数据预处理
pickle_file = '/home/sxl/tensor学习/My Udacity/notM/notMNISTs.pickle'
#为了加速计算,这个是经过处理的小样本mnist手写数字,这个数据可在[这里](http://download.csdn.net/detail/whitesilence/9908115)下载
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
image_size = 28
num_labels = 10
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#创建一个7层网络
layer_sizes = [784, 1000, 500, 250, 250,250,10]
L = len(layer_sizes) - 1 # number of layers
num_examples = train_dataset.shape[0]
num_epochs = 100
starter_learning_rate = 0.02
decay_after = 15 # epoch after which to begin learning rate decay
batch_size = 120
num_iter = (num_examples/batch_size) * num_epochs # number of loop iterations
x = tf.placeholder(tf.float32, shape=(None, layer_sizes[0]))
outputs = tf.placeholder(tf.float32)
testing=tf.placeholder(tf.bool)
learning_rate = tf.Variable(starter_learning_rate, trainable=False)
def bi(inits, size, name):
return tf.Variable(inits * tf.ones([size]), name=name)
def wi(shape, name):
return tf.Variable(tf.random_normal(shape, name=name)) / math.sqrt(shape[0])
shapes = zip(layer_sizes[:-1], layer_sizes[1:]) # shapes of linear layers
weights = {'W': [wi(s, "W") for s in shapes], # feedforward weights
# batch normalization parameter to shift the normalized value
'beta': [bi(0.0, layer_sizes[l+1], "beta") for l in range(L)],
# batch normalization parameter to scale the normalized value
'gamma': [bi(1.0, layer_sizes[l+1], "beta") for l in range(L)]}
ewma = tf.train.ExponentialMovingAverage(decay=0.99) # to calculate the moving averages of mean and variance
bn_assigns = [] # this list stores the updates to be made to average mean and variance
def batch_normalization(batch, mean=None, var=None):
if mean is None or var is None:
mean, var = tf.nn.moments(batch, axes=[0])
return (batch - mean) / tf.sqrt(var + tf.constant(1e-10))
# average mean and variance of all layers
running_mean = [tf.Variable(tf.constant(0.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
running_var = [tf.Variable(tf.constant(1.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
def update_batch_normalization(batch, l):
"batch normalize + update average mean and variance of layer l"
mean, var = tf.nn.moments(batch, axes=[0])
assign_mean = running_mean[l-1].assign(mean)
assign_var = running_var[l-1].assign(var)
bn_assigns.append(ewma.apply([running_mean[l-1], running_var[l-1]]))
with tf.control_dependencies([assign_mean, assign_var]):
return (batch - mean) / tf.sqrt(var + 1e-10)
def eval_batch_norm(batch,l):
mean = ewma.average(running_mean[l - 1])
var = ewma.average(running_var[l - 1])
s = batch_normalization(batch, mean, var)
return s
def net(x,weights,testing=False):
d={'m': {}, 'v': {}, 'h': {}}
h=x
for l in range(1, L+1):
print "Layer ", l, ": ", layer_sizes[l-1], " -> ", layer_sizes[l]
d['h'][l-1]=h
s= tf.matmul(d['h'][l-1], weights['W'][l-1])
m, v = tf.nn.moments(s, axes=[0])
if testing:
s=eval_batch_norm(s,l)
else:
s=update_batch_normalization(s, l)
s=weights['gamma'][l-1] * s + weights["beta"][l-1]
if l == L:
# use softmax activation in output layer
h = tf.nn.softmax(s)
else:
h= tf.nn.relu(s)
d['m'][l]=m
d['v'][l]=v
d['h'][l]=h
return h,d
y,_=net(x,weights)
cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y), 1))
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(outputs, 1)) # no of correct predictions
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) * tf.constant(100.0)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cost)
# add the updates of batch normalization statistics to train_step
bn_updates = tf.group(*bn_assigns)
with tf.control_dependencies([train_step]):
train_step = tf.group(bn_updates)
print "=== Starting Session ==="
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
i_iter = 0
print "=== Training ==="
#print "Initial Accuracy: ", sess.run(accuracy, feed_dict={x: test_dataset, outputs: test_labels, testing: True}), "%"
for i in tqdm(range(i_iter, num_iter)):
#images, labels = mnist.train.next_batch(batch_size)
start = (i * batch_size) % num_examples
images=train_dataset[start:start+batch_size,:]
labels=train_labels[start:start+batch_size,:]
sess.run(train_step, feed_dict={x: images, outputs: labels})
if (i > 1) and ((i+1) % (num_iter/num_epochs) == 0):#i>1且完成了一个epochs,即所有数据训练完一遍
epoch_n = i/(num_examples/batch_size)#第几个epochs
perm = np.arange(num_examples)
np.random.shuffle(perm)
train_dataset = train_dataset[perm]#所有训练数据迭代完一次后,对训练数据进行重排,避免下一次迭代时取的是同样的数据
train_labels = train_labels[perm]
if (epoch_n+1) >= decay_after:
# decay learning rate
# learning_rate = starter_learning_rate * ((num_epochs - epoch_n) / (num_epochs - decay_after))
ratio = 1.0 * (num_epochs - (epoch_n+1)) # epoch_n + 1 because learning rate is set for next epoch
ratio = max(0, ratio / (num_epochs - decay_after))
sess.run(learning_rate.assign(starter_learning_rate * ratio))
print "Train Accuracy: ",sess.run(accuracy,feed_dict={x: images, outputs: labels})
print "Final Accuracy: ", sess.run(accuracy, feed_dict={x: test_dataset, outputs: test_labels, testing: True}), "%"
sess.close()
关于batch normal 的另一参考资料http://blog.csdn.net/intelligence1994/article/details/53888270
tensorflow常用函数介绍http://blog.csdn.net/wuqingshan2010/article/details/71056292
参考:https://blog.csdn.net/whitesilence/article/details/75667002