本文主要是BP网络的前后向传播较详细推导,以及C++实现,记下来也方便后面的回顾,也希望对关系细节的读者也一丝帮助。如果有不对的地方,请指正。
BP图模型:
网络中单个激活单元:
这里有两点注意:
- 输入层的单元中没有偏置项b,但有权值项w。
- 输出层的单元中没有权值项w,但有偏置项b。
相关符号定义:
符号 | 意义 |
---|---|
m | 样本数 |
nl | 网络的总层数 |
Ll | 第 l 层 |
W(l)ij | l 层的j单元与 l+1 的i单元之间的权值(weight) |
b(l)i | 第 l 层第i个单元的偏置项 |
Sl | 表示第 l 层的节点数 |
a(l)i | 表示第 l 层第i单元的激活值 |
f(x) | sigmoid函数: f(x)=11+e−x |
z(l)i | 表示第 l 层第i单元的输入 |
hwb(x) | 表示整个网络对输入x的输出结果,等价于 a(nl) |
损失函数(带2范式正则):
J(W,b)=1m∑i=1mJ(W,b;xi,yi)+λ2∑l=1nl−1∑i=1Sl∑j=1Sl+1(W(l)ji)2
其中,J(W,b;x,y)=12∥hwb(x)−y∥2
我们优化所有权值和偏置就是通过最小化损失函数来实现的,通过对损失函数计算各权值和偏置的梯度,然后沿着各自梯度的反方向走,就可以让损失函数慢慢变小,由于神经网络不是的损失函数不是严格凸函数,所以并不能保证找到全局最优解。我们首先就要计算各权值和偏置关于损失函数的梯度。
前向传播
Tip : 这里需要先初始化各单元中的权值和偏置项的值,权值可以按照标准正态分布去产生,也可以使用其它方式产生,但最好不要偷懒而给所有权值赋上相同的值,这样会导致极慢的收敛速度,有兴趣的读者可以修改下面的程序自己试下。
反向传播
Tip : 如果直接对损失函数中位于第一层的权值求导,会发现无从下手,因为后面的所有层的激活单元都直接或间接的包含了第一层的权值,这是一种嵌套的关系(数学函数嵌套,类似于斐波那契数列),第一层的权值被嵌套的最深。换言之,约靠后的激活单元,其权值在损失函数中嵌套的就越浅。既然这样,那我们可以先从靠后的权值下手,比如倒数第二层的权值 Wnl−1 ,在损失函数中,就是最顶层的(输出层没有权值)。为了后期计算的方便,我们从后向前对各层各激活单元的输入变量 Zli 求导。后在对 Wli 求导就显得非常简单了,这里主要是求导的链式法则起到了关键作用(题外话:RNN中的LSTM单元也是通过这种思想求解,可以将时间t比作层数来从后向前计算)。
计算各权值和偏置的梯度:
更新策略:对于每一个样本 (xi,yi) ,先使用前向传播计算出各激活单元的输出值 ali ,再通过反向传播,计算出各激活单元的输入关于单个样本对应损失函数的偏导 δli ,之后就可以是用下面的公式对所有样本求出每个权值和偏置的偏导,并使用优化算法对其更新,这里使用的是梯度下降,也可以使用SGD等优化算法。
权值关于损失函数的梯度:
偏置关于损失函数的梯度:
程序中相关变量解释:
变量名 | 代表含义 |
---|---|
value | 对应单元的激活值: a(l)i |
rightout | 样本真实值: yi |
error | 损失误差: 1m∑i=1mJ(W,b;xi,yi) |
delta | 单个样本偏差: ∂J(W,b;xi,yi)∂W(l)ji |
wDeltaSum | 整个样本偏差和,即最终的权值偏差: ∂J(W,b)∂W(l)ji |
下面是c++版实现程序(没有使用正则):
BpNet.h:
#include
#include
#include
#include
#include
using namespace std;
#define innode 2 //输入节点数
#define hidenode 4 //隐含节点数
#define hidelayer 1 //隐含层数
#define outnode 1 //输出节点数
#define learningRate 0.9 //学习速率,alpha
//产生随机数
inline double get_11Random()
{
return ((2.0*(double)rand()/RAND_MAX) - 1);
}
//sigmoid函数
inline double sigmoid(double x)
{
double ans = 1.0/(1+exp(-x));
return ans;
}
/*输入层节点
//1.value: 固定输入值
//2.weight: 面对第一层隐含层每个节点都有权值
//3.wDeltaSum: 面对第一层隐含层每个节点权值的delta值积累
*/
typedef struct inputNode
{
double value;
vector<double> weight,wDeltaSum;
}inputNode;
/*输出层节点
1.value: 节点当前值
2.delta: 与正确输出值之间的delta值
3.rightout: 正确输出值
4.bias: 偏移量
5.bDeltaSum: bias的delta值的积累,每个节点一个
*/
typedef struct outputNode
{
double value, delta, rightout, bias, bDeltaSum;
}outputNode;
/*隐含层节点
1.value: 节点当前值
2.delta: BP推导出的delta值
3.bias: 偏移量
4.bDeltaSum: bias的delta值的积累,每个节点一个
5.weight: 面对下一层每个节点都有的权值
6.wDeltaSum: weight的delta值的积累,面对下一层每个节点各自积累
*/
typedef struct hiddenNode
{
double value, delta, bias, bDeltaSum;
vector<double> weight, wDeltaSum;
}hiddenNode;
//单个样本
typedef struct sample
{
vector<double> in, out;
}sample;
//BP神经网络
class BpNet
{
public:
BpNet(); //构造函数
void forwardPropagationEpoc(); //单个样本前向传播
void backPropagationEpoc(); //单个样本后向传播
void training (static vector sampleGroup, double threshold); //更新weight,bias
void predict(vector & testGroup); //神经网络预测
void setInput(static vector<double> sampleIn); //设置学习样本输入
void setOutput(static vector<double> sampleOut); //设置学习样本输出
double error;
inputNode* inputLayer[innode]; //输入层
outputNode* outputLayer[outnode]; //输出层
hiddenNode* hiddenLayer[hidelayer][hidenode]; //隐含层
};
BpNet.cpp:
#include "BpNet.h"
using namespace std;
BpNet::BpNet()
{
srand((unsigned)time(NULL));
error = 100.f;
//初始化输入层
for(int i = 0; i< innode; i++)
{
inputLayer[i] = new inputNode();
for(int j = 0; j < hidenode; j++)
{
inputLayer[i]->weight.push_back(get_11Random());
inputLayer[i]->wDeltaSum.push_back(0.f);
}
}
//初始化隐藏层
for ( int i = 0; i < hidelayer; i++)
{
if ( i ==hidelayer - 1)
{
for(int j = 0;j < hidenode; j++ )
{
hiddenLayer[i][j] = new hiddenNode();
hiddenLayer[i][j]->bias = get_11Random();
for (int k = 0;k < outnode; k++)
{
hiddenLayer[i][j]->weight.push_back(get_11Random());
hiddenLayer[i][j]->wDeltaSum.push_back(0.f);
}
}
}
else
{
for (int j =0; j < hidenode; j++)
{
hiddenLayer[i][j] = new hiddenNode();
hiddenLayer[i][j]->bias = get_11Random();
for (int k = 0; k < hidenode; k++)
{
hiddenLayer[i][j]->weight.push_back(get_11Random());
hiddenLayer[i][j]->wDeltaSum.push_back(0.f);
}
}
}
}
//初始化输出层
for ( int i = 0; i < outnode; i++)
{
outputLayer[i] = new outputNode();
outputLayer[i]->bias = get_11Random();
}
}
void BpNet::forwardPropagationEpoc()
{
//forward propagation on hidden layer
for ( int i = 0; i < hidelayer; i++)
{
if (i == 0 )
{
for ( int j = 0; j < hidenode; j++)
{
double sum = 0.f;
for ( int k = 0; k < innode; k++)
{
sum += inputLayer[k]->value * inputLayer[k]->weight[j];
}
sum += hiddenLayer[i][j]->bias;
hiddenLayer[i][j]->value = sigmoid(sum);
}
}
else
{
for ( int j = 0; j < hidenode; j++)
{
double sum = 0.f;
for ( int k = 0; k < hidenode; k++)
{
sum += hiddenLayer[i-1][k]->value*hiddenLayer[i-1][k]->weight[j];
}
sum += hiddenLayer[i][j]->bias;
hiddenLayer[i][j]->value = sigmoid(sum);
}
}
}
//forward propagation on output layer
for ( int i = 0; i < outnode; i++)
{
double sum = 0.f;
for( int j = 0; j < hidenode; j++)
{
sum += hiddenLayer[hidelayer - 1][j]->value * hiddenLayer[hidelayer - 1][j]->weight[i];
}
sum += outputLayer[i]->bias;
outputLayer[i]->value = sigmoid(sum);
}
}
void BpNet::backPropagationEpoc()
{
// backward propagation on output layer
// -- comput delta
for ( int i = 0; i < outnode; i++)
{
double temp = fabs(outputLayer[i]->value-outputLayer[i]->rightout);
error += temp * temp / 2;
outputLayer[i]->delta = (outputLayer[i]->value - outputLayer[i]->rightout)*(1-outputLayer[i]->value)*outputLayer[i]->value;
}
// backward propagation on hidden layer
// compute delta
for ( int i = hidelayer - 1; i >= 0; i--)
{
if ( i == hidelayer - 1)
{
for ( int j = 0; j < hidenode; j++)
{
double sum = 0.f;
for ( int k = 0; k < outnode; k++)
{
sum += outputLayer[k]->delta * hiddenLayer[i][j]->weight[k];
}
hiddenLayer[i][j]->delta = sum*hiddenLayer[i][j]->value*(1 - hiddenLayer[i][j]->value);
}
}
else
{
for ( int j = 0; j < hidenode; j++)
{
double sum = 0.f;
for ( int k = 0; k < hidenode; k++)
{
sum += hiddenLayer[i + 1][k]->delta * hiddenLayer[i][j]->weight[k];
}
hiddenLayer[i][j]->delta = sum * hiddenLayer[i][j]->value*(1-hiddenLayer[i][j]->value);
}
}
}
// backward propagation on input layer
// update weight delta sum
for ( int i = 0; i < innode; i++)
{
for ( int j = 0; j < hidenode; j++)
{
inputLayer[i]->wDeltaSum[j] += inputLayer[i]->value*hiddenLayer[0][j]->delta;
}
}
// backward propagation on hidden layer
// update weight delta sum and bias delta sum
// 计算偏导数
for ( int i = 0; i < hidelayer; i++)
{
if ( i == hidelayer - 1)
{
for ( int j = 0; j < hidenode; j++)
{
hiddenLayer[i][j]->bDeltaSum += hiddenLayer[i][j]->delta;
for ( int k = 0; k < outnode; k++)
{
hiddenLayer[i][j]->wDeltaSum[k] += hiddenLayer[i][j]->value * outputLayer[k]->delta;
}
}
}
else
{
for (int j = 0; j < hidenode; j++)
{
hiddenLayer[i][j]->bDeltaSum += hiddenLayer[i][j]->delta;
for ( int k = 0; k < hidenode; k++)
{
hiddenLayer[i][j]->wDeltaSum[k] += hiddenLayer[i][j]->value * hiddenLayer[i+1][k]->delta;
}
}
}
}
// backward propagation on output layer
// update bias delta sum
for ( int i = 0; i < outnode; i++)
{
outputLayer[i]->bDeltaSum += outputLayer[i]->delta;
}
}
void BpNet::training(static vector sampleGroup, double threshold)
{
int sampleNum = sampleGroup.size();
while ( error > threshold)
{
cout << "training error:"<0.f;
//initialize delta sum
for ( int i = 0; i < innode; i++)
{
inputLayer[i]->wDeltaSum.assign(inputLayer[i]->wDeltaSum.size(), 0.f);
}
for ( int i = 0; i < hidelayer; i++)
{
for ( int j = 0; j < hidenode; j++)
{
hiddenLayer[i][j]->wDeltaSum.assign(hiddenLayer[i][j]->wDeltaSum.size(), 0.f);
hiddenLayer[i][j]->bDeltaSum = 0.f;
}
}
for ( int i = 0; i < outnode; i++)
{
outputLayer[i]->bDeltaSum = 0.f;
}
// start training
for( int iter = 0; iter < sampleNum; iter++)
{
// initial data of input and output
setInput(sampleGroup[iter].in);
setOutput(sampleGroup[iter].out);
// forward and backward propagation
// compute delta
forwardPropagationEpoc();
backPropagationEpoc();
}
// deltasum had computed over! then update weight and bias
// backward propagation on input layer
// update weight with Gradient descent
for ( int i = 0; i < innode; i++)
{
for ( int j = 0; j < hidenode; j++)
{
inputLayer[i]->weight[j] -= learningRate * inputLayer[i]->wDeltaSum[j] /sampleNum;
}
}
// backward propagation on hidden layer
// update weight and bias
for ( int i = 0; i < hidelayer; i++)
{
if( i == hidelayer -1)
{
for ( int j = 0; j < hidenode; j++)
{
// update bias
hiddenLayer[i][j]->bias -= learningRate * hiddenLayer[i][j]->bDeltaSum/sampleNum;
// update weight
for ( int k = 0; k < outnode; k++)
{
hiddenLayer[i][j]->weight[k] -= learningRate * hiddenLayer[i][j]->wDeltaSum[k]/sampleNum;
}
}
}
else
{
for ( int j = 0; j < hidenode; j++)
{
// update bias
hiddenLayer[i][j]->bias -= learningRate * hiddenLayer[i][j]->bDeltaSum/sampleNum;
// update weight
for ( int k = 0; k < hidenode; k++)
{
hiddenLayer[i][j]->weight[k] -= learningRate * hiddenLayer[i][j]->wDeltaSum[k]/sampleNum;
}
}
}
}
// backward propagation on output layer
// udate bias
for ( int i = 0; i < outnode; i++)
{
outputLayer[i]->bias -= learningRate * outputLayer[i]->bDeltaSum/sampleNum;
}
}
}
void BpNet::predict(vector & testGroup)
{
int testNum = testGroup.size();
for(int iter = 0; iter < testNum; iter++)
{
testGroup[iter].out.clear();
setInput(testGroup[iter].in);
forwardPropagationEpoc();
for ( int i = 0; i< outnode; i++)
{
testGroup[iter].out.push_back(outputLayer[i]->value);
}
}
}
void BpNet::setInput(static vector<double> sampleIn)
{
for ( int i = 0; i < innode; i++)
{
inputLayer[i]->value = sampleIn[i];
}
}
void BpNet::setOutput(static vector<double> sampleOut)
{
for ( int i = 0; i < outnode; i++)
{
outputLayer[i]->rightout = sampleOut[i];
}
}
int main()
{
BpNet testNet;
//学习样本
vector<double> samplein[4];
vector<double> sampleout[4];
samplein[0].push_back(0);
samplein[0].push_back(0);
sampleout[0].push_back(0);
samplein[1].push_back(0);
samplein[1].push_back(1);
sampleout[1].push_back(1);
samplein[2].push_back(1);
samplein[2].push_back(0);
sampleout[2].push_back(1);
samplein[3].push_back(1);
samplein[3].push_back(1);
sampleout[3].push_back(0);
sample sampleInOut[4];
for ( int i = 0; i < 4; i++)
{
sampleInOut[i].in = samplein[i];
sampleInOut[i].out = sampleout[i];
}
vector sampleGroup(sampleInOut, sampleInOut + 4);
testNet.training(sampleGroup, 0.0001);
//测试数据
vector<double> testin[4];
vector<double> testout[4];
testin[0].push_back(0.1);
testin[0].push_back(0.2);
testin[1].push_back(0.15);
testin[1].push_back(0.9);
testin[2].push_back(1.1);
testin[2].push_back(0.01);
testin[3].push_back(0.88);
testin[3].push_back(1.03);
sample testInOut[4];
for ( int i = 0; i < 4; i++)
{
testInOut[i].in = testin[i];
}
vector testGroup(testInOut, testInOut + 4);
//预测测试数据,并输出结果
testNet.predict(testGroup);
for ( int i = 0; i < testGroup.size(); i++)
{
for ( int j = 0; j < testGroup[i].in.size(); j ++)
{
cout << testGroup[i].in[j] << "\t";
}
cout << "--- prediction:";
for ( int j = 0; j < testGroup[i].out.size(); j++)
{
cout << testGroup[i].out[j] << "\t";
}
cout << endl;
}
system("pause");
return 0;
}
本文为作者原创,转载请注明出处,谢谢!
参考