kubernetes集群三步安装
我嫌弃官方提供的编译脚本太麻烦,所以用了更简单粗暴的方式编译k8s代码,当然官方脚本在编译所有项目或者夸平台编译以及realse时还是挺有用的。
在容器中编译:
docker run -v /work/src/k8s.io/kubernetes:/go/src/k8s.io/kubernetes golang:1.11.2 bash
在容器中可以保证环境干净
进入bash后直接进入kube-scheduler的主目录编译即可
cd cmd/kube-scheduler && go build
二进制就产生了。。。
作为高端玩家,自动化是必须的,因为服务器性能更好,用CI/CD编译更快,这里分享一下我的一些配置:
$ cat Dockerfile-build1.12.2
FROM golang:1.11.2
COPY vendor/ /vendor
然后代码里的vendor就可以删了
workspace:
base: /go/src/k8s.io
path: kubernetes
pipeline:
build:
image: fanux/kubernetes-build:1.12.2-beta.3
commands:
- make all WHAT=cmd/kube-kubescheduler GOFLAGS=-v
publish:
image: plugins/docker
registry: xxx
username: xxx
password: xxx
email: xxx
repo: xxx/container/kube-scheduler
tags: ${DRONE_TAG=latest}
dockerfile: dockerfile/Dockerfile-kube-scheduler
insecure: true
when:
event: [push, tag]
$ cat dockerfile/Dockerfile-kube-scheduler
FROM scratch
COPY _output/local/bin/linux/amd64/kube-scheduler /
CMD ["/kube-scheduler"]
对于kubeadm这种二进制交付的,可直接编译然后传到nexus上, 通过drone deploy事件选择是不是要编译kubeadm:
build_kubeadm:
image: fanux/kubernetes-build:1.12.2-beta.3
commands:
- make all WHAT=cmd/kube-kubeadm GOFLAGS=-v
- curl -v -u container:container --upload-file kubeadm http://172.16.59.153:8081/repository/kubernetes/kubeadm/
when:
event: deployment
enviroment: kubeadm
发现build完的kubeadm二进制并不能用,可能是build时选用的基础镜像的问题,也可能是没去生成一些代码导致的问题
[signal SIGSEGV: segmentation violation code=0x1 addr=0x63 pc=0x7f2b7f5f057c]
runtime stack:
runtime.throw(0x17c74a8, 0x2a)
/usr/local/go/src/runtime/panic.go:608 +0x72
runtime.sigpanic()
/usr/local/go/src/runtime/signal_unix.go:374 +0x2f2
后面再补上CD的配置
如此我编译scheduler代码大约40秒左右,如vendor可软连接还可节省十几秒
+-------------------------------------------+ +----+
| Add | | |
| | | | Update
+ Assume Add v v |
Initial +--------> Assumed +------------+---> Added <--+
^ + + | +
| | | | |
| | | Add | | Remove
| | | | |
| | | + |
+----------------+ +-----------> Expired +----> Deleted
type schedulerCache struct {
stop <-chan struct{}
ttl time.Duration
period time.Duration
// This mutex guards all fields within this cache struct.
mu sync.RWMutex
// a set of assumed pod keys.
// The key could further be used to get an entry in podStates.
assumedPods map[string]bool
// a map from pod key to podState.
podStates map[string]*podState
nodes map[string]*NodeInfo
nodeTree *NodeTree
pdbs map[string]*policy.PodDisruptionBudget
// A map from image name to its imageState.
imageStates map[string]*imageState
}
这里存储了基本调度所需要的所有信息
以AddPod接口为例,本质上就是把监听到的一个pod放到了cache的map里:
cache.addPod(pod)
ps := &podState{
pod: pod,
}
cache.podStates[key] = ps
node Tree节点信息有这样一个结构体保存:
type NodeTree struct {
tree map[string]*nodeArray // a map from zone (region-zone) to an array of nodes in the zone.
zones []string // a list of all the zones in the tree (keys)
zoneIndex int
NumNodes int
mu sync.RWMutex
}
cache 运行时会循环清理过期的assume pod
func (cache *schedulerCache) run() {
go wait.Until(cache.cleanupExpiredAssumedPods, cache.period, cache.stop)
}
scheduler里面最重要的两个东西:cache 和调度算法
type Scheduler struct {
config *Config -------> SchedulerCache
|
+---> Algorithm
}
等cache更新好了,调度器就是调度一个pod:
func (sched *Scheduler) Run() {
if !sched.config.WaitForCacheSync() {
return
}
go wait.Until(sched.scheduleOne, 0, sched.config.StopEverything)
}
核心逻辑来了:
+-------------+
| 获取一个pod |
+-------------+
|
+-----------------------------------------------------------------------------------+
| 如果pod的DeletionTimestamp 存在就不用进行调度, kubelet发现这个字段会直接去删除pod |
+-----------------------------------------------------------------------------------+
|
+-----------------------------------------+
| 选一个suggestedHost,可理解为合适的节点 |
+-----------------------------------------+
|_____________选不到就进入强占的逻辑,与我当初写swarm调度器逻辑类似
|
+--------------------------------------------------------------------------------+
| 虽然还没真调度到node上,但是告诉cache pod已经被调度到node上了,变成assume pod |
| 这里面会先检查volumes |
| 然后:err = sched.assume(assumedPod, suggestedHost) 假设pod被调度到node上了 |
+--------------------------------------------------------------------------------+
|
+---------------------------+
| 异步的bind这个pod到node上 |
| 先bind volume |
| bind pod |
+---------------------------+
|
+----------------+
| 暴露一些metric |
+----------------+
err := sched.bind(assumedPod, &v1.Binding{
ObjectMeta: metav1.ObjectMeta{Namespace: assumedPod.Namespace, Name: assumedPod.Name, UID: assumedPod.UID},
Target: v1.ObjectReference{
Kind: "Node",
Name: suggestedHost,
},
})
先去bind pod,然后告诉cache bind结束
err := sched.config.GetBinder(assumed).Bind(b)
if err := sched.config.SchedulerCache.FinishBinding(assumed);
+----------------+
| GetBinder.Bind
+----------------+
|
+-------------------------------------+
| 告诉cache bind完成 FinishBinding接口
+-------------------------------------+
|
+-----------------------------------------------------+
| 失败了就ForgetPod, 更新一下pod状态为 BindingRejected
+-----------------------------------------------------+
最终就是调用了apiserver bind接口:
func (b *binder) Bind(binding *v1.Binding) error {
glog.V(3).Infof("Attempting to bind %v to %v", binding.Name, binding.Target.Name)
return b.Client.CoreV1().Pods(binding.Namespace).Bind(binding)
}
▾ algorithm/
▸ predicates/ 预选
▸ priorities/ 优选
现在最重要的就是选节点的实现
suggestedHost, err := sched.schedule(pod)
也就是调度算法的实现:
type ScheduleAlgorithm interface {
// 传入pod 节点列表,返回一下合适的节点
Schedule(*v1.Pod, NodeLister) (selectedMachine string, err error)
// 资源抢占用的
Preempt(*v1.Pod, NodeLister, error) (selectedNode *v1.Node, preemptedPods []*v1.Pod, cleanupNominatedPods []*v1.Pod, err error)
// 预选函数集,
Predicates() map[string]FitPredicate
| 这一个节点适合不适合调度这个pod,不适合的话返回原因
+-------type FitPredicate func(pod *v1.Pod, meta PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []PredicateFailureReason, error)
// 返回优选配置,最重要两个函数 map 和 reduce
Prioritizers() []PriorityConfig
|____________PriorityMapFunction 计算 节点的优先级
|____________PriorityReduceFunction 根据map的结果计算所有node的最终得分
|____________PriorityFunction 废弃
}
调度算法可以通过两种方式生成:
最终new了一个scheduler:
priorityConfigs, err := c.GetPriorityFunctionConfigs(priorityKeys)
priorityMetaProducer, err := c.GetPriorityMetadataProducer()
predicateMetaProducer, err := c.GetPredicateMetadataProducer()
|
algo := core.NewGenericScheduler( |
c.schedulerCache, |
c.equivalencePodCache, V
c.podQueue,
predicateFuncs, ============> 这里面把预选优选函数都注入进来了
predicateMetaProducer,
priorityConfigs,
priorityMetaProducer,
extenders,
c.volumeBinder,
c.pVCLister,
c.alwaysCheckAllPredicates,
c.disablePreemption,
c.percentageOfNodesToScore,
)
type genericScheduler struct {
cache schedulercache.Cache
equivalenceCache *equivalence.Cache
schedulingQueue SchedulingQueue
predicates map[string]algorithm.FitPredicate
priorityMetaProducer algorithm.PriorityMetadataProducer
predicateMetaProducer algorithm.PredicateMetadataProducer
prioritizers []algorithm.PriorityConfig
extenders []algorithm.SchedulerExtender
lastNodeIndex uint64
alwaysCheckAllPredicates bool
cachedNodeInfoMap map[string]*schedulercache.NodeInfo
volumeBinder *volumebinder.VolumeBinder
pvcLister corelisters.PersistentVolumeClaimLister
disablePreemption bool
percentageOfNodesToScore int32
}
这个scheduler实现了ScheduleAlgorithm中定义的接口
Schedule 流程:
+------------------------------------+
| trace记录一下,要开始调度哪个pod了 |
+------------------------------------+
|
+-----------------------------------------------+
| pod基本检查,这里主要检查卷和delete timestamp |
+-----------------------------------------------+
|
+----------------------------------------+
| 获取node列表, 更新cache的node info map |
+----------------------------------------+
|
+----------------------------------------------+
| 预选,返回合适的节点列表和预选失败节点的原因 |
+----------------------------------------------+
|
+----------------------------------------------------------+
| 优选, |
| 如果预选结果只有一个节点,那么直接使用之,不需要进行优选 |
| 否则进行优选过程 |
+----------------------------------------------------------+
|
+------------------------------------+
| 在优选结果列表中选择得分最高的节点 |
+------------------------------------+
主要分成两块
podFitOnNode: 判断这个节点是不是适合这个pod调度
这里插播一个小知识,调度器里有个Ecache:
Equivalence Class目前是用来在Kubernetes Scheduler加速Predicate,提升Scheduler的吞吐性能。Kubernetes scheduler及时维护着Equivalence Cache的数据,当某些情况发生时(比如delete node、bind pod等事件),需要立刻invalid相关的Equivalence Cache中的缓存数据。
一个Equivalence Class是用来定义一组具有相同Requirements和Constraints的Pods的相关信息的集合,在Scheduler进行Predicate阶段时可以只需对Equivalence Class中一个Pod进行Predicate,并把Predicate的结果放到Equivalence Cache中以供该Equivalence Class中其他Pods(成为Equivalent Pods)重用该结果。只有当Equivalence Cache中没有可以重用的Predicate Result才会进行正常的Predicate流程。
ecache这块后续可以深入讨论,本文更多关注核心架构与流程
所以这块就比较简单了, 把所有的预选函数执行行一遍
先排序 predicates.Ordering()
if predicate, exist := predicateFuncs[predicateKey]; exist {
fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
顺序是这样的:
predicatesOrdering = []string{CheckNodeConditionPred, CheckNodeUnschedulablePred,
GeneralPred, HostNamePred, PodFitsHostPortsPred,
MatchNodeSelectorPred, PodFitsResourcesPred, NoDiskConflictPred,
PodToleratesNodeTaintsPred, PodToleratesNodeNoExecuteTaintsPred, CheckNodeLabelPresencePred,
CheckServiceAffinityPred, MaxEBSVolumeCountPred, MaxGCEPDVolumeCountPred, MaxCSIVolumeCountPred,
MaxAzureDiskVolumeCountPred, CheckVolumeBindingPred, NoVolumeZoneConflictPred,
CheckNodeMemoryPressurePred, CheckNodePIDPressurePred, CheckNodeDiskPressurePred, MatchInterPodAffinityPred}
这些预选函数是存在一个map里的,key是一个string,value就是一个预选函数, 再回头去看注册map的逻辑
predicateFuncs, err := c.GetPredicates(predicateKeys)
pkg/scheduler/algorithmprovider/defaults/defaults.go 里面会对这些函数进行注册,如:
factory.RegisterFitPredicate(predicates.NoDiskConflictPred, predicates.NoDiskConflict),
factory.RegisterFitPredicate(predicates.GeneralPred, predicates.GeneralPredicates),
factory.RegisterFitPredicate(predicates.CheckNodeMemoryPressurePred, predicates.CheckNodeMemoryPressurePredicate),
factory.RegisterFitPredicate(predicates.CheckNodeDiskPressurePred, predicates.CheckNodeDiskPressurePredicate),
factory.RegisterFitPredicate(predicates.CheckNodePIDPressurePred, predicates.CheckNodePIDPressurePredicate),
然后直接在init函数里调用注册逻辑
PrioritizeNodes 优选大概可分为三个步骤:
优选函数同理也是注册进去的, 不再赘述
factory.RegisterPriorityFunction2("LeastRequestedPriority", priorities.LeastRequestedPriorityMap, nil, 1),
// Prioritizes nodes to help achieve balanced resource usage
factory.RegisterPriorityFunction2("BalancedResourceAllocation", priorities.BalancedResourceAllocationMap, nil, 1),
这里注册时注册两个,一个map函数一个reduce函数,为了更好的理解mapreduce,去看一个实现
factory.RegisterPriorityFunction2("NodeAffinityPriority", priorities.CalculateNodeAffinityPriorityMap, priorities.CalculateNodeAffinityPriorityReduce, 1)
map 核心逻辑, 比较容易理解:
如果满足节点亲和,积分加权重
count += preferredSchedulingTerm.Weight
return schedulerapi.HostPriority{
Host: node.Name,
Score: int(count), # 算出积分
}, nil
reduce:一个节点会走很多个map,每个map会产生一个分值,如node affinity产生一个,pod affinity再产生一个,所以node和分值是一对多的关系
去掉reverse的逻辑(分值越高优先级越低)
var maxCount int
for i := range result {
if result[i].Score > maxCount {
maxCount = result[i].Score # 所有分值里的最大值
}
}
for i := range result {
score := result[i].Score
score = maxPriority * score / maxCount # 分值乘以最大优先级是maxPriority = 10,除以最大值赋值给分值 这里是做了归一化处理;
result[i].Score = score
}
这里做了归一化处理后分值就变成[0,maxPriority]之间了
for i := range priorityConfigs {
if priorityConfigs[i].Function != nil {
continue
}
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
if err != nil {
appendError(err)
results[i][index].Host = nodes[index].Name
}
}
err := config.Reduce(pod, meta, nodeNameToInfo, results[index]);
看这里有个results,对理解很重要,是一个二维数组:
xxx | node1 | node2 | node3 |
---|---|---|---|
nodeaffinity | 1分 | 2分 | 1分 |
pod affinity | 1分 | 3分 | 6分 |
... | ... | ... | ... |
这样reduce时取一行,其实也就是处理所有节点的某项得分
result[i].Score += results[j][i].Score * priorityConfigs[j].Weight (二维变一维)
reduce完最终这个节点的得分就等于这个节点各项得分乘以该项权重的和,最后排序选最高分 (一维变0纬)
scheduler配置里有一个NextPod
方法,获取一个pod,并进行调度:
pod := sched.config.NextPod()
配置文件在这里初始化:
pkg/scheduler/factory/factory.go
NextPod: func() *v1.Pod {
return c.getNextPod()
},
func (c *configFactory) getNextPod() *v1.Pod {
pod, err := c.podQueue.Pop()
if err == nil {
return pod
}
...
}
队列接口:
type SchedulingQueue interface {
Add(pod *v1.Pod) error
AddIfNotPresent(pod *v1.Pod) error
AddUnschedulableIfNotPresent(pod *v1.Pod) error
Pop() (*v1.Pod, error)
Update(oldPod, newPod *v1.Pod) error
Delete(pod *v1.Pod) error
MoveAllToActiveQueue()
AssignedPodAdded(pod *v1.Pod)
AssignedPodUpdated(pod *v1.Pod)
WaitingPodsForNode(nodeName string) []*v1.Pod
WaitingPods() []*v1.Pod
}
给了两种实现,优先级队列和FIFO :
func NewSchedulingQueue() SchedulingQueue {
if util.PodPriorityEnabled() {
return NewPriorityQueue() # 基于堆排序实现,根据优先级排序
}
return NewFIFO() # 简单的先进先出
}
队列实现比较简单,不做深入分析, 更重要的是关注队列,调度器,cache之间的关系:
AddFunc: c.addPodToCache,
UpdateFunc: c.updatePodInCache,
DeleteFunc: c.deletePodFromCache,
| informer监听,了pod创建事件之后往cache和队列里都更新了
V
if err := c.schedulerCache.AddPod(pod); err != nil {
glog.Errorf("scheduler cache AddPod failed: %v", err)
}
c.podQueue.AssignedPodAdded(pod)
+------------+ ADD +-------------+ POP +-----------+
| informer |------>| sche Queue |------->| scheduler |
+------------+ | +-------------+ +----^------+
+-->+-------------+ |
| sche cache |<------------+
+-------------+
定制化调度器有三种方式:
目前第三点资料非常少,很多细节需要在代码里找到答案,带着问题看代码效果更好。
+----------------------------------+ +----------+
| kube-scheduler -> extender client|------>| extender | (你需要开发的扩展,单独的进程)
+----------------------------------+ +----------+
这个接口是kube-scheduler实现的,下面会介绍HTTPextender的实现
type SchedulerExtender interface {
// 最重要的一个接口,输入pod和节点列表,输出是符合调度的节点的列表
Filter(pod *v1.Pod,
nodes []*v1.Node, nodeNameToInfo map[string]*schedulercache.NodeInfo,
) (filteredNodes []*v1.Node, failedNodesMap schedulerapi.FailedNodesMap, err error)
// 这个给节点打分的,优选时需要用的
Prioritize(pod *v1.Pod, nodes []*v1.Node) (hostPriorities *schedulerapi.HostPriorityList, weight int, err error)
// Bind接口主要是最终调度器选中节点哪个节点时通知extender
Bind(binding *v1.Binding) error
// IsBinder returns whether this extender is configured for the Bind method.
IsBinder() bool
// 可以过滤你感兴趣的pod 比如按照标签
IsInterested(pod *v1.Pod) bool
// ProcessPreemption returns nodes with their victim pods processed by extender based on
// given:
// 1. Pod to schedule
// 2. Candidate nodes and victim pods (nodeToVictims) generated by previous scheduling process.
// 3. nodeNameToInfo to restore v1.Node from node name if extender cache is enabled.
// The possible changes made by extender may include:
// 1. Subset of given candidate nodes after preemption phase of extender.
// 2. A different set of victim pod for every given candidate node after preemption phase of extender.
// 我猜是与亲和性相关的功能,不太清楚 TODO
ProcessPreemption(
pod *v1.Pod,
nodeToVictims map[*v1.Node]*schedulerapi.Victims,
nodeNameToInfo map[string]*schedulercache.NodeInfo,
) (map[*v1.Node]*schedulerapi.Victims, error)
// 优先级抢占特性,可不实现
SupportsPreemption() bool
// 当访问不到extender时怎么处理,返回真时extender获取不到时调度不能失败
IsIgnorable() bool
}
官方实现了HTTPextender,可以看下:
type HTTPExtender struct {
extenderURL string
preemptVerb string
filterVerb string # 预选RUL
prioritizeVerb string # 优选RUL
bindVerb string
weight int
client *http.Client
nodeCacheCapable bool
managedResources sets.String
ignorable bool
}
看其预选和优选逻辑:
args = &schedulerapi.ExtenderArgs{ # 调度的是哪个pod,哪些节点符合调度条件, 返回的也是这个结构体
Pod: pod,
Nodes: nodeList,
NodeNames: nodeNames,
}
if err := h.send(h.filterVerb, args, &result); err != nil { # 发了个http请求给extender(你要去实现的httpserver), 返回过滤后的结构
return nil, nil, err
}
NamespaceSystem string = "kube-system"
SchedulerDefaultLockObjectNamespace string = metav1.NamespaceSystem
// SchedulerPolicyConfigMapKey defines the key of the element in the
// scheduler's policy ConfigMap that contains scheduler's policy config.
SchedulerPolicyConfigMapKey = "policy.cfg"
调度器的代码写的还是挺不错的,相比较于kube-proxy好多了,可扩展性也还可以,不过目测调度器会面临一次大的重构,现阶段调度器对深度学习的批处理任务支持就不好而one by one调度的这种设定关系到整个项目的架构,要想优雅的支持更优秀的调度估计重构是跑不掉了
扫码关注sealyun探讨可加QQ群:98488045