我使用anaconda3,建议大家也用这个,好用!!!
假设你安装完了anaconda3.
一、创建一个测试Demo的实验环境
conda create -n PyTorch-demo python=3.6
The following NEW packages will be INSTALLED:
ca-certificates: 2018.03.07-0
certifi: 2018.4.16-py36_0
libcxx: 4.0.1-h579ed51_0
libcxxabi: 4.0.1-hebd6815_0
libedit: 3.1.20170329-hb402a30_2
libffi: 3.2.1-h475c297_4
ncurses: 6.1-h0a44026_0
openssl: 1.0.2o-h1de35cc_1
pip: 10.0.1-py36_0
python: 3.6.6-hc167b69_0
readline: 7.0-hc1231fa_4
setuptools: 39.2.0-py36_0
sqlite: 3.24.0-ha441bb4_0
tk: 8.6.7-h35a86e2_3
wheel: 0.31.1-py36_0
xz: 5.2.4-h1de35cc_4
zlib: 1.2.11-hf3cbc9b_2
Proceed ([y]/n)? y
二、安装需要的一些环境,包括pytorch
激活环境,并进入
source activate PyTorch-demo
给conda添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
安装环境依赖
conda install numpy pyyaml mkl mkl-include setuptools cmake cffi typing
pip install opencv-python matplotlib scikit-image tqdm tensorboardX
conda install pytorch-cpu torchvision-cpu -c pytorch
#for GPU
conda install pytorch torchvision cuda80 -c pytorch
三、测试pytorch
>>> import torch
>>> x=torch.ones(1,1,6,6)
>>> print(x)
tensor([[[[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.]]]])