- 2025年中央预算内投资专项(第二批)节能降碳申报指南:方向解析、条件详解与实操攻略
卧涛西安17391873147
人工智能大数据物联网制造
核心提示:2025年中央预算内投资专项(第二批)节能降碳项目申报已进入倒计时!本文深度解析申报方向、条件、资金支持比例,并提供七大行业改造实例与申报策略,助您抢占政策红利先机。一、政策背景与申报时效2025年中央预算内投资专项(第二批)节能降碳是国家"双碳"战略落地的关键举措,旨在通过财政支持加速重点领域低碳转型。本批次申报截止日期为本月底,拟申报单位需立即启动材料准备工作。二、三大申报方向深度解
- 优化Apache Spark性能之JVM参数配置指南
weixin_30777913
jvmspark大数据开发语言性能优化
ApacheSpark运行在JVM之上,JVM的垃圾回收(GC)、内存管理以及堆外内存使用情况,会直接对Spark任务的执行效率产生影响。因此,合理配置JVM参数是优化Spark性能的关键步骤,以下将详细介绍优化策略和配置建议。通过以下优化方法,可以显著减少GC停顿时间、提升内存利用率,进而提高Spark作业吞吐量和数据处理效率。同时,要根据具体的工作负载和集群配置进行调整,并定期监控Spark应
- TK矩阵系统:高效管理与智能化操作平台
m0_74891046
矩阵
随着TikTok等社交媒体平台的快速发展,短视频创作和内容运营逐渐成为互联网行业的重要组成部分。为了帮助内容创作者、品牌运营商以及数据分析人员更高效地管理多个TikTok账号并优化运营策略,TK矩阵系统提供了一种全新的解决方案,结合了先进的软件技术与硬件设施,旨在简化操作流程,提高工作效率。TK矩阵系统概述TK矩阵系统是一款集成软件与硬件的综合平台,专为TikTok内容管理和数据采集设计。系统使用
- 【Kafka高级】Kafka性能优化与调优实践
全栈追梦人
kafka性能优化linq
在大规模数据处理和实时消息传递场景中,Kafka的性能优化至关重要。本文将从生产者性能优化、消费者性能优化以及集群性能调优三个方面展开,结合实际代码示例和配置参数,帮助读者更好地理解和应用Kafka性能优化策略。一、生产者性能优化Kafka生产者的性能直接影响消息发送的效率和系统的吞吐量。以下是一些关键优化策略:1.1批量发送生产者会将消息批量发送到Kafka,减少网络请求次数。以下参数对批量发送
- 耦合与解耦:软件工程中的核心矛盾与破局之道
以恒1
软件工程
耦合与解耦:软件工程中的核心矛盾与破局之道在软件开发领域,耦合与解耦是贯穿始终的核心矛盾。它们如同硬币的两面,既相互对立又紧密依存。本文将从概念解析、类型分类、解耦策略到实际应用,全面剖析这对矛盾体的本质与破局之道。一、耦合的本质:依赖关系的多维透视耦合(Coupling)指软件系统中不同模块、组件或服务之间的相互依赖程度。这种依赖可能表现为数据传递、控制流交互或资源共享。根据耦合强度,可分为七种
- 【K8S】ImagePullBackOff状态问题排查。
执键行天涯
K8skubernetes容器云原生
ImagePullBackOff是在使用Kubernetes(K8s)时经常遇到的一种错误状态,下面为你详细介绍其含义、可能的原因及解决办法。含义当你在K8s集群中创建一个Pod时,Kubelet会尝试从指定的镜像仓库拉取所需的容器镜像。如果拉取镜像失败,Kubelet会进行重试。随着重试次数的增加,重试的间隔时间会逐渐变长,这就是所谓的“指数退避”策略。当Kubelet多次尝试拉取镜像都失败后,
- 一文弄懂Python 变量初始化与内存管理
宇寒风暖
python编程python开发语言笔记学习
在Python中,变量的初始化并不一定会开辟新的内存空间。Python的内存管理机制非常灵活,它会根据变量的值、类型以及Python的内部优化策略来决定是否复用已有的内存空间。1.变量初始化的基本概念在Python中,变量是对象的引用。当你初始化一个变量时,Python会执行以下操作:创建一个对象(如果该对象不存在)。将变量名绑定到该对象。例如:a=10b="hello"a是一个整数对象的引用。b
- BRAM消耗与FIFO的关系:有效利用FPGA资源的策略
kanhao100
HLSfpga开发
BRAM消耗与FIFO的关系:有效利用FPGA资源的策略引言在FPGA设计中,BRAM(BlockRAM)是用于存储数据的重要资源。有效管理和利用BRAM对于实现高性能数字系统至关重要。特别是对于需要频繁读写数据的应用,FIFO(先进先出)缓冲区的使用与BRAM的消耗之间存在着密切的关系。本文将探讨BRAM的消耗、FIFO的特性,以及如何正确利用BRAM以优化设计效率。1.BRAM的基本概念1.1
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 【存储中间件】Redis核心技术与实战(六):Redis的设计与实现(缓存淘汰算法、过期策略与惰性删除)
道友老李
#Redis核心技术与实战架构师进阶-存储中间件缓存中间件redis
文章目录Redis的设计与实现缓存淘汰算法maxmemoryNoevictionvolatile-lruvolatile-ttlvolatile-randomallkeys-lruallkeys-randomLRU算法近似LRU算法LFU算法为什么Redis要缓存系统时间戳过期策略和惰性删除过期惰性删除lazyfree个人主页:道友老李欢迎加入社区:道友老李的学习社区Redis的设计与实现缓存淘汰
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 对于项目管理过程,如何减少项目返工?
在项目管理中,返工是吞噬资源、拖延进度、消磨士气的"隐形杀手"。据统计,软件开发项目中因需求变更导致的返工成本占总成本的30%-50%,而在建筑工程领域,返工率超过10%的项目普遍存在利润率下降风险。减少返工不仅是效率问题,更是项目管理的核心能力体现。本文将从返工根源剖析、全流程防控策略到工具方法落地,系统阐述如何构建"一次做对"的项目管理体系。一、返工的五大病根诊断需求模糊症(占比35%)用户需
- 【无标题】
gs80140
AI人工智能
KVCache在自回归生成中的作用及显存优化1.什么是KVCache?在大语言模型(LLM)进行自回归(autoregressive)文本生成时,每次生成新token,都需要基于过去的上下文重新计算self-attention机制中的Key(K)和值(V)。KVCache(键值缓存)是一种优化策略,它缓存先前计算的K/V张量,避免重复计算,从而提高生成速度并降低计算成本。2.KVCache在自回归
- 源代码防泄密和安全上外网的关联
cnsinda_sdc
源码安全源代码加密信息安全网络安全服务器源代码防泄露
在数字化办公的时代,企业员工需要频繁访问互联网以获取信息、进行沟通和协作。然而,互联网的开放性也带来了诸多安全风险,如恶意软件、网络攻击、数据泄露等。SPN沙盒作为一种先进的安全上网解决方案,为企业提供了一种安全、可控的上网方式。一、系统构成与部署(一)管理端管理端是SPN沙盒系统的控制中心,负责对整个沙盒系统进行管理控制。它具备以下功能:系统配置与策略管理:管理员可以通过管理端对SPN沙盒系统进
- synchronized 的特性与机制
坚持拒绝熬夜
java开发语言笔记
目录1.synchronized的特性锁策略(1)既是乐观锁也是悲观锁(2)既是轻量级锁,也是重量级锁(3)轻量级锁基于自旋实现,重量级锁基于挂起等待实现(4)不是读写锁(5)是可重入锁(6)是非公平锁2.synchronized的使用3.synchronized的锁机制偏向锁自旋锁和重量级锁4.synchronized的优化策略1.锁的消除2.锁的粗化1.synchronized的特性(1)既是
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 六十天前端强化训练之第二十一天大师级详解 React Context API:从原理到实战
编程星辰海
#前端前端react.jsjavascriptReactContextAPI
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、庖丁解牛:深入理解ContextAPI1.1设计哲学与运转机制工作原理三步曲:1.2核心三剑客详解1.3性能优化要诀二、手把手实现主题切换系统2.1完整代码实现(逐行注释版)2.2配套CSS样式设计三、关键知识点拆解3.1状态初始化策略3.2CSS变量注入原理3.3性能优化实践3.4可访问性最佳实践四、
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- Python 问题:ModuleNotFoundError: No module named ‘matplotlib‘
我命由我12345
Python-问题清单pythonmatplotlib开发语言c++c#后端
问题与处理策略1、问题描述importmatplotlib.pyplotaspltfig,ax=plt.subplots()ax.plot([1,2,3,4],[1,4,2,3])plt.show()执行上述代码,报如下错误ModuleNotFoundError:Nomodulenamed'matplotlib'#翻译ModuleNotFoundation错误:没有名为matplotlib的模块2
- 项目经理在推进项目时,职能线经理不配合怎么办?
在矩阵型组织中,项目经理与职能线经理的博弈如同“双人舞”——前者关注项目目标,后者专注职能效率,两者的权力交叉地带往往成为冲突高发区。PMI报告显示,68%的项目延期与资源协调受阻直接相关,而职能经理的配合度是资源获取的核心变量。本文将从权力结构剖析、实战应对策略到长效机制建设,提供一套破解职能壁垒的系统化方案。一、职能博弈的三大底层逻辑资源争夺战职能经理的KPI聚焦部门资源利用率,与项目临时抽调
- 项目经理的验收突围战:从风险预判到价值交付的破局之道
在软件项目交付失败的统计中,近40%的问题集中爆发在验收环节。当某智慧城市项目在验收阶段遭遇23个功能点争议时,项目经理发现合同中的验收标准竟写着"系统运行稳定"这样的模糊表述——这个真实案例折射出验收管理的复杂性。项目经理需要构建从需求源头到价值交付的全周期验收防御体系。一、验收危机的三大引爆点与拆解策略需求迷雾:概念共识的断层某医疗AI项目开发时,客户口中的"智能分诊"被工程师理解为规则引擎,
- 客户总是提出不合理的需求,如何破局?
在项目管理中,“客户提出不合理需求”是项目经理最常遇到的挑战之一。这些需求可能超出合同范围、违背技术可行性、突破预算或时间限制,甚至逻辑上自相矛盾。但真正的困境往往不在于需求本身是否合理,而在于如何平衡客户期望与项目边界,将对抗转化为合作。本文将从需求本质剖析、结构化应对策略到高阶破局思维,提供一套系统化的解决方案。一、需求“不合理”的本质诊断表象与根源的错位冰山模型:客户表面需求(如“界面要更酷
- 如何做好性能测试
测试
如何做好性能测试主要依靠测试策略规划、性能测试工具选择、数据分析优化**。其中测试策略规划尤为关键,通过制定详细的测试目标和场景,明确各阶段测试重点,有助于降低项目风险和优化系统性能。实践中,企业普遍发现,完善的测试策略可以使系统响应时间降低20%~30%,大大提升用户体验和业务稳定性。一、性能测试的基本概念与重要性性能测试是指通过模拟用户操作及系统负载,对软件系统的响应时间、吞吐量、资源利用率等
- ci如何做才能做到每秒rps 为3000+
行思理
LNMP运维CIphp
要让CodeIgniter(CI)实现每秒3000+RPS(RequestsPerSecond)的高并发处理能力,需要从框架优化、服务器配置、代码设计等多方面入手。尽管CI本身是一个轻量级框架,但其默认配置和传统PHP-FPM模式的性能天花板较低(通常RPS在500-800左右),需通过以下优化策略突破性能瓶颈:一、核心优化方向1.升级PHP版本与启用OPcachePHP8+:使用PHP8.0及以
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 【新能源集成热管理系统的开发与优化】
新能源汽车--三电老K
研发测试汽车学习方法
新能源集成热管理系统的开发与优化涉及多阶段的试验、标定和策略调整,需结合实验室仿真、环境仓测试及实车道路验证,以应对高低温、极端气候等复杂工况。以下是具体实施方法:一、环境仓试验室测试系统标定与基础验证模型搭建:通过AMESim等仿真工具建立机-电-热耦合模型,涵盖电池、电机、空调等子系统,分析高温工况下各部件能耗占比及整车续航表现。参数标定:在环境仓中模拟极端温度(如38℃高温或-30℃低温),
- 前端面经分享(25/03/18)
CreatorRay
react面试前端前端面试react
北京一家做边缘云服务提供商公司,技术一面,15k-20k,要求3-5年上家公司的项目为什么会选择MQTT进行通信React常用Hook为什么React不能在条件语句里用Hook前端常见的优化策略React如何捕获子组件的错误React给节点加key会有什么效果最近俩家公司都用WebSocket做了什么HTTP各个版本的区别跨域的常见解决方案前端常见布局WebSocket和SSE的区别A页面滚动到一
- 优化Redis AOF重写配置:解决AOF文件过大的终极指南
冯·诺依曼的
redis数据库缓存云计算
核心配置参数解析与优化以下配置参数位于Redis配置文件/etc/redis.conf中,用于控制AOF持久化与重写行为。通过合理调整这些参数,可显著减少AOF文件体积并提升性能。1.appendfsync:AOF文件同步策略默认值:everysec修改建议:appendfsyncno作用:控制AOF日志同步到磁盘的频率。everysec(默认):每秒同步一次,平衡性能与数据安全。no:由操作系统
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少