Jump to...
- Papers
- DeepFont
- DeepText
- Text Detection
- Text Recognition
- Breaking Captcha
- Handwritten Recognition
- Plate Recognition
- Blogs
- Projects
- Datasets
- Videos
- Resources
End-to-End Text Recognition with Convolutional Neural Networks
- paper: http://www.cs.stanford.edu/~acoates/papers/wangwucoatesng_icpr2012.pdf
- PhD thesis: http://cs.stanford.edu/people/dwu4/HonorThesis.pdf
Word Spotting and Recognition with Embedded Attributes
- paper: http://ieeexplore.ieee.org.sci-hub.org/xpl/articleDetails.jsp?arnumber=6857995&filter%3DAND%28p_IS_Number%3A6940341%29
Reading Text in the Wild with Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1412.1842
- homepage: http://www.robots.ox.ac.uk/~vgg/publications/2016/Jaderberg16/
- demo: http://zeus.robots.ox.ac.uk/textsearch/#/search/
- code: http://www.robots.ox.ac.uk/~vgg/research/text/
Deep structured output learning for unconstrained text recognition
- intro: “propose an architecture consisting of a character sequence CNN and an N-gram encoding CNN which act on an input image in parallel and whose outputs are utilized along with a CRF model to recognize the text content present within the image.”
- arxiv: http://arxiv.org/abs/1412.5903
Deep Features for Text Spotting
- paper: http://www.robots.ox.ac.uk/~vgg/publications/2014/Jaderberg14/jaderberg14.pdf
- bitbucket: https://bitbucket.org/jaderberg/eccv2014_textspotting
- gitxiv: http://gitxiv.com/posts/uB4y7QdD5XquEJ69c/deep-features-for-text-spotting
Reading Scene Text in Deep Convolutional Sequences
- arxiv: http://arxiv.org/abs/1506.04395
DeepFont: Identify Your Font from An Image
- arxiv: http://arxiv.org/abs/1507.03196
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
- arxiv: http://arxiv.org/abs/1507.05717
- github: https://github.com/bgshih/crnn
Recursive Recurrent Nets with Attention Modeling for OCR in the Wild
- arxiv: http://arxiv.org/abs/1603.03101
Writer-independent Feature Learning for Offline Signature Verification using Deep Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1604.00974
DeepText: A Unified Framework for Text Proposal Generation and Text Detection in Natural Images
- arxiv: http://arxiv.org/abs/1605.07314
End-to-End Interpretation of the French Street Name Signs Dataset
- paper: http://link.springer.com/chapter/10.1007%2F978-3-319-46604-0_30
- github: https://github.com/tensorflow/models/tree/master/street
End-to-End Subtitle Detection and Recognition for Videos in East Asian Languages via CNN Ensemble with Near-Human-Level Performance
- arxiv: https://arxiv.org/abs/1611.06159
Smart Library: Identifying Books in a Library using Richly Supervised Deep Scene Text Reading
- arxiv: https://arxiv.org/abs/1611.07385
Object Proposals for Text Extraction in the Wild
- intro: ICDAR 2015
- arxiv: http://arxiv.org/abs/1509.02317
- github: https://github.com/lluisgomez/TextProposals
Text-Attentional Convolutional Neural Networks for Scene Text Detection
- arxiv: http://arxiv.org/abs/1510.03283
Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network
- arxiv: http://arxiv.org/abs/1603.09423
Synthetic Data for Text Localisation in Natural Images
- intro: CVPR 2016
- project page: http://www.robots.ox.ac.uk/~vgg/data/scenetext/
- arxiv: http://arxiv.org/abs/1604.06646
- paper: http://www.robots.ox.ac.uk/~vgg/data/scenetext/gupta16.pdf
- github: https://github.com/ankush-me/SynthText
Scene Text Detection via Holistic, Multi-Channel Prediction
- arxiv: http://arxiv.org/abs/1606.09002
Detecting Text in Natural Image with Connectionist Text Proposal Network
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1609.03605
- github(Caffe): https://github.com/tianzhi0549/CTPN
- demo: http://textdet.com/
TextBoxes: A Fast Text Detector with a Single Deep Neural Network
- intro: AAAI 2017
- arxiv: https://arxiv.org/abs/1611.06779
- github(Caffe): https://github.com/MhLiao/TextBoxes
Sequence to sequence learning for unconstrained scene text recognition
- intro: master thesis
- arxiv: http://arxiv.org/abs/1607.06125
Drawing and Recognizing Chinese Characters with Recurrent Neural Network
- arxiv: https://arxiv.org/abs/1606.06539
Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition
- intro: correct rates: Dataset-CASIA 97.10% and Dataset-ICDAR 97.15%
- arxiv: https://arxiv.org/abs/1610.02616
Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition
- arxiv: https://arxiv.org/abs/1610.04057
Using deep learning to break a Captcha system
- intro: “Using Torch code to break simplecaptcha with 92% accuracy”
- blog: https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/
- github: https://github.com/arunpatala/captcha
Breaking reddit captcha with 96% accuracy
- blog: https://deepmlblog.wordpress.com/2016/01/05/breaking-reddit-captcha-with-96-accuracy/
- github: https://github.com/arunpatala/reddit.captcha
I’m not a human: Breaking the Google reCAPTCHA
- paper: https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
Neural Net CAPTCHA Cracker
- slides: http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/geetika/CS298%20Slides%20-%20PDF
- github: https://github.com/bgeetika/Captcha-Decoder
- demo: http://cp-training.appspot.com/
Recurrent neural networks for decoding CAPTCHAS
- blog: https://deepmlblog.wordpress.com/2016/01/12/recurrent-neural-networks-for-decoding-captchas/
- demo: http://simplecaptcha.sourceforge.net/
- code: http://sourceforge.net/projects/simplecaptcha/
Reading irctc captchas with 95% accuracy using deep learning
- github: https://github.com/arunpatala/captcha.irctc
端到端的OCR:基于CNN的实现
- blog: http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/
I Am Robot: (Deep) Learning to Break Semantic Image CAPTCHAs
- intro: automatically solving 70.78% of the image reCaptchachallenges, while requiring only 19 seconds per challenge. apply to the Facebook image captcha and achieve an accuracy of 83.5%
- paper: http://www.cs.columbia.edu/~polakis/papers/sivakorn_eurosp16.pdf
Handwritten Recognition
High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Maps
- arxiv: http://arxiv.org/abs/1505.04925
- github: https://github.com/zhongzhuoyao/HCCR-GoogLeNet
Recognize your handwritten numbers
https://medium.com/@o.kroeger/recognize-your-handwritten-numbers-3f007cbe46ff#.jllz62xgu
Handwritten Digit Recognition using Convolutional Neural Networks in Python with Keras
- blog: http://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
MNIST Handwritten Digit Classifier
- github: https://github.com/karandesai-96/digit-classifier
如何用卷积神经网络CNN识别手写数字集?
- blog: http://www.cnblogs.com/charlotte77/p/5671136.html
LeNet – Convolutional Neural Network in Python
- blog: http://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention
- arxiv: http://arxiv.org/abs/1604.03286
MLPaint: the Real-Time Handwritten Digit Recognizer
- blog: http://blog.mldb.ai/blog/posts/2016/09/mlpaint/
- github: https://github.com/mldbai/mlpaint
- demo: https://docs.mldb.ai/ipy/notebooks/_demos/_latest/Image%20Processing%20with%20Convolutions.html
Training a Computer to Recognize Your Handwriting
https://medium.com/@annalyzin/training-a-computer-to-recognize-your-handwriting-24b808fb584#.gd4pb9jk2
Using TensorFlow to create your own handwriting recognition engine
- blog: https://niektemme.com/2016/02/21/tensorflow-handwriting/
- github: https://github.com/niektemme/tensorflow-mnist-predict/
Building a Deep Handwritten Digits Classifier using Microsoft Cognitive Toolkit
- blog: https://medium.com/@tuzzer/building-a-deep-handwritten-digits-classifier-using-microsoft-cognitive-toolkit-6ae966caec69#.c3h6o7oxf
- github: https://github.com/tuzzer/ai-gym/blob/a97936619cf56b5ed43329c6fa13f7e26b1d46b8/MNIST/minist_softmax_cntk.py
Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs
- arxiv: http://arxiv.org/abs/1601.05610
Number plate recognition with Tensorflow
- blog: http://matthewearl.github.io/2016/05/06/cnn-anpr/
- github(Deep ANPR): https://github.com/matthewearl/deep-anpr
end-to-end-for-plate-recognition
- github: https://github.com/szad670401/end-to-end-for-chinese-plate-recognition
Applying OCR Technology for Receipt Recognition
- blog: http://rnd.azoft.com/applying-ocr-technology-receipt-recognition/
- mirror: http://pan.baidu.com/s/1qXQBQiC
Hacking MNIST in 30 lines of Python
- blog: http://jrusev.github.io/post/hacking-mnist/
- github: https://github.com/jrusev/simple-neural-networks
ocropy: Python-based tools for document analysis and OCR
- github: https://github.com/tmbdev/ocropy
Extracting text from an image using Ocropus
- blog: http://www.danvk.org/2015/01/09/extracting-text-from-an-image-using-ocropus.html
CLSTM : A small C++ implementation of LSTM networks, focused on OCR
- github: https://github.com/tmbdev/clstm
caffe-ocr: OCR with caffe deep learning framework
- github: https://github.com/pannous/caffe-ocr
Digit Recognition via CNN: digital meter numbers detection
- github(caffe): https://github.com/SHUCV/digit
Attention-OCR: Visual Attention based OCR
- github: https://github.com/da03/Attention-OCR
umaru: An OCR-system based on torch using the technique of LSTM/GRU-RNN, CTC and referred to the works of rnnlib and clstm
- github: https://github.com/edward-zhu/umaru
Tesseract.js: Pure Javascript OCR for 62 Languages
- homepage: http://tesseract.projectnaptha.com/
- github: https://github.com/naptha/tesseract.js
DeepHCCR: Offline Handwritten Chinese Character Recognition based on GoogLeNet and AlexNet (With CaffeModel)
- github: https://github.com/chongyangtao/DeepHCCR
COCO-Text: Dataset and Benchmark for Text Detection and Recognition in Natural Images
- homepage: http://vision.cornell.edu/se3/coco-text/
- arxiv: http://arxiv.org/abs/1601.07140
LSTMs for OCR
- youtube: https://www.youtube.com/watch?v=5vW8faXvnrc
Scene Text Localization & Recognition Resources
- intro: A curated list of resources dedicated to scene text localization and recognition
- github: https://github.com/chongyangtao/Awesome-Scene-Text-Recognition