OCR material

Jump to...
  1. Papers
    1. DeepFont
    2. DeepText
  2. Text Detection
  3. Text Recognition
  4. Breaking Captcha
  5. Handwritten Recognition
  6. Plate Recognition
  7. Blogs
  8. Projects
  9. Datasets
  10. Videos
  11. Resources

Papers

End-to-End Text Recognition with Convolutional Neural Networks

  • paper: http://www.cs.stanford.edu/~acoates/papers/wangwucoatesng_icpr2012.pdf
  • PhD thesis: http://cs.stanford.edu/people/dwu4/HonorThesis.pdf

Word Spotting and Recognition with Embedded Attributes

OCR material_第1张图片

  • paper: http://ieeexplore.ieee.org.sci-hub.org/xpl/articleDetails.jsp?arnumber=6857995&filter%3DAND%28p_IS_Number%3A6940341%29

Reading Text in the Wild with Convolutional Neural Networks

OCR material_第2张图片

  • arxiv: http://arxiv.org/abs/1412.1842
  • homepage: http://www.robots.ox.ac.uk/~vgg/publications/2016/Jaderberg16/
  • demo: http://zeus.robots.ox.ac.uk/textsearch/#/search/
  • code: http://www.robots.ox.ac.uk/~vgg/research/text/

Deep structured output learning for unconstrained text recognition

  • intro: “propose an architecture consisting of a character sequence CNN and an N-gram encoding CNN which act on an input image in parallel and whose outputs are utilized along with a CRF model to recognize the text content present within the image.”
  • arxiv: http://arxiv.org/abs/1412.5903

Deep Features for Text Spotting

  • paper: http://www.robots.ox.ac.uk/~vgg/publications/2014/Jaderberg14/jaderberg14.pdf
  • bitbucket: https://bitbucket.org/jaderberg/eccv2014_textspotting
  • gitxiv: http://gitxiv.com/posts/uB4y7QdD5XquEJ69c/deep-features-for-text-spotting

Reading Scene Text in Deep Convolutional Sequences

  • arxiv: http://arxiv.org/abs/1506.04395

DeepFont

DeepFont: Identify Your Font from An Image

  • arxiv: http://arxiv.org/abs/1507.03196

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

  • arxiv: http://arxiv.org/abs/1507.05717
  • github: https://github.com/bgshih/crnn

Recursive Recurrent Nets with Attention Modeling for OCR in the Wild

  • arxiv: http://arxiv.org/abs/1603.03101

Writer-independent Feature Learning for Offline Signature Verification using Deep Convolutional Neural Networks

  • arxiv: http://arxiv.org/abs/1604.00974

DeepText

DeepText: A Unified Framework for Text Proposal Generation and Text Detection in Natural Images

  • arxiv: http://arxiv.org/abs/1605.07314

End-to-End Interpretation of the French Street Name Signs Dataset

  • paper: http://link.springer.com/chapter/10.1007%2F978-3-319-46604-0_30
  • github: https://github.com/tensorflow/models/tree/master/street

End-to-End Subtitle Detection and Recognition for Videos in East Asian Languages via CNN Ensemble with Near-Human-Level Performance

  • arxiv: https://arxiv.org/abs/1611.06159

Smart Library: Identifying Books in a Library using Richly Supervised Deep Scene Text Reading

  • arxiv: https://arxiv.org/abs/1611.07385

Text Detection

Object Proposals for Text Extraction in the Wild

  • intro: ICDAR 2015
  • arxiv: http://arxiv.org/abs/1509.02317
  • github: https://github.com/lluisgomez/TextProposals

Text-Attentional Convolutional Neural Networks for Scene Text Detection

  • arxiv: http://arxiv.org/abs/1510.03283

Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network

  • arxiv: http://arxiv.org/abs/1603.09423

Synthetic Data for Text Localisation in Natural Images

OCR material_第3张图片

  • intro: CVPR 2016
  • project page: http://www.robots.ox.ac.uk/~vgg/data/scenetext/
  • arxiv: http://arxiv.org/abs/1604.06646
  • paper: http://www.robots.ox.ac.uk/~vgg/data/scenetext/gupta16.pdf
  • github: https://github.com/ankush-me/SynthText

Scene Text Detection via Holistic, Multi-Channel Prediction

  • arxiv: http://arxiv.org/abs/1606.09002

Detecting Text in Natural Image with Connectionist Text Proposal Network

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1609.03605
  • github(Caffe): https://github.com/tianzhi0549/CTPN
  • demo: http://textdet.com/

TextBoxes: A Fast Text Detector with a Single Deep Neural Network

  • intro: AAAI 2017
  • arxiv: https://arxiv.org/abs/1611.06779
  • github(Caffe): https://github.com/MhLiao/TextBoxes

Text Recognition

Sequence to sequence learning for unconstrained scene text recognition

  • intro: master thesis
  • arxiv: http://arxiv.org/abs/1607.06125

Drawing and Recognizing Chinese Characters with Recurrent Neural Network

  • arxiv: https://arxiv.org/abs/1606.06539

Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

  • intro: correct rates: Dataset-CASIA 97.10% and Dataset-ICDAR 97.15%
  • arxiv: https://arxiv.org/abs/1610.02616

Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition

  • arxiv: https://arxiv.org/abs/1610.04057

Breaking Captcha

Using deep learning to break a Captcha system

  • intro: “Using Torch code to break simplecaptcha with 92% accuracy”
  • blog: https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/
  • github: https://github.com/arunpatala/captcha

Breaking reddit captcha with 96% accuracy

  • blog: https://deepmlblog.wordpress.com/2016/01/05/breaking-reddit-captcha-with-96-accuracy/
  • github: https://github.com/arunpatala/reddit.captcha

I’m not a human: Breaking the Google reCAPTCHA

  • paper: https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf

Neural Net CAPTCHA Cracker

  • slides: http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/geetika/CS298%20Slides%20-%20PDF
  • github: https://github.com/bgeetika/Captcha-Decoder
  • demo: http://cp-training.appspot.com/

Recurrent neural networks for decoding CAPTCHAS

  • blog: https://deepmlblog.wordpress.com/2016/01/12/recurrent-neural-networks-for-decoding-captchas/
  • demo: http://simplecaptcha.sourceforge.net/
  • code: http://sourceforge.net/projects/simplecaptcha/

Reading irctc captchas with 95% accuracy using deep learning

  • github: https://github.com/arunpatala/captcha.irctc

端到端的OCR:基于CNN的实现

  • blog: http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/

I Am Robot: (Deep) Learning to Break Semantic Image CAPTCHAs

  • intro: automatically solving 70.78% of the image reCaptchachallenges, while requiring only 19 seconds per challenge. apply to the Facebook image captcha and achieve an accuracy of 83.5%
  • paper: http://www.cs.columbia.edu/~polakis/papers/sivakorn_eurosp16.pdf

Handwritten Recognition

High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Maps

  • arxiv: http://arxiv.org/abs/1505.04925
  • github: https://github.com/zhongzhuoyao/HCCR-GoogLeNet

Recognize your handwritten numbers

https://medium.com/@o.kroeger/recognize-your-handwritten-numbers-3f007cbe46ff#.jllz62xgu

Handwritten Digit Recognition using Convolutional Neural Networks in Python with Keras

  • blog: http://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/

MNIST Handwritten Digit Classifier

  • github: https://github.com/karandesai-96/digit-classifier

如何用卷积神经网络CNN识别手写数字集?

  • blog: http://www.cnblogs.com/charlotte77/p/5671136.html

LeNet – Convolutional Neural Network in Python

  • blog: http://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/

Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention

  • arxiv: http://arxiv.org/abs/1604.03286

MLPaint: the Real-Time Handwritten Digit Recognizer

OCR material_第4张图片

  • blog: http://blog.mldb.ai/blog/posts/2016/09/mlpaint/
  • github: https://github.com/mldbai/mlpaint
  • demo: https://docs.mldb.ai/ipy/notebooks/_demos/_latest/Image%20Processing%20with%20Convolutions.html

Training a Computer to Recognize Your Handwriting

https://medium.com/@annalyzin/training-a-computer-to-recognize-your-handwriting-24b808fb584#.gd4pb9jk2

Using TensorFlow to create your own handwriting recognition engine

  • blog: https://niektemme.com/2016/02/21/tensorflow-handwriting/
  • github: https://github.com/niektemme/tensorflow-mnist-predict/

Building a Deep Handwritten Digits Classifier using Microsoft Cognitive Toolkit

  • blog: https://medium.com/@tuzzer/building-a-deep-handwritten-digits-classifier-using-microsoft-cognitive-toolkit-6ae966caec69#.c3h6o7oxf
  • github: https://github.com/tuzzer/ai-gym/blob/a97936619cf56b5ed43329c6fa13f7e26b1d46b8/MNIST/minist_softmax_cntk.py

Plate Recognition

Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs

  • arxiv: http://arxiv.org/abs/1601.05610

Number plate recognition with Tensorflow

  • blog: http://matthewearl.github.io/2016/05/06/cnn-anpr/
  • github(Deep ANPR): https://github.com/matthewearl/deep-anpr

end-to-end-for-plate-recognition

  • github: https://github.com/szad670401/end-to-end-for-chinese-plate-recognition

Blogs

Applying OCR Technology for Receipt Recognition

  • blog: http://rnd.azoft.com/applying-ocr-technology-receipt-recognition/
  • mirror: http://pan.baidu.com/s/1qXQBQiC

Hacking MNIST in 30 lines of Python

  • blog: http://jrusev.github.io/post/hacking-mnist/
  • github: https://github.com/jrusev/simple-neural-networks

Projects

ocropy: Python-based tools for document analysis and OCR

  • github: https://github.com/tmbdev/ocropy

Extracting text from an image using Ocropus

  • blog: http://www.danvk.org/2015/01/09/extracting-text-from-an-image-using-ocropus.html

CLSTM : A small C++ implementation of LSTM networks, focused on OCR

  • github: https://github.com/tmbdev/clstm

caffe-ocr: OCR with caffe deep learning framework

  • github: https://github.com/pannous/caffe-ocr

Digit Recognition via CNN: digital meter numbers detection

  • github(caffe): https://github.com/SHUCV/digit

Attention-OCR: Visual Attention based OCR

OCR material_第5张图片

  • github: https://github.com/da03/Attention-OCR

umaru: An OCR-system based on torch using the technique of LSTM/GRU-RNN, CTC and referred to the works of rnnlib and clstm

  • github: https://github.com/edward-zhu/umaru

Tesseract.js: Pure Javascript OCR for 62 Languages

  • homepage: http://tesseract.projectnaptha.com/
  • github: https://github.com/naptha/tesseract.js

DeepHCCR: Offline Handwritten Chinese Character Recognition based on GoogLeNet and AlexNet (With CaffeModel)

  • github: https://github.com/chongyangtao/DeepHCCR

Datasets

COCO-Text: Dataset and Benchmark for Text Detection and Recognition in Natural Images

  • homepage: http://vision.cornell.edu/se3/coco-text/
  • arxiv: http://arxiv.org/abs/1601.07140

Videos

LSTMs for OCR

  • youtube: https://www.youtube.com/watch?v=5vW8faXvnrc

Resources

Scene Text Localization & Recognition Resources

  • intro: A curated list of resources dedicated to scene text localization and recognition
  • github: https://github.com/chongyangtao/Awesome-Scene-Text-Recognition

你可能感兴趣的:(word,recognition)