- vue render 函数详解 (配参数详解)
你的眼睛會笑
vue2vue.jsjavascript前端
vuerender函数详解(配参数详解)在Vue3中,`render`函数被用来代替Vue2中的模板语法。它接收一个h函数(或者是`createElement`函数的别名),并且返回一个虚拟DOM。render函数的语法结构如下:render(h){returnh('div',{class:'container'},'Hello,World!')}在上面的示例中,我们使用h函数创建了一个div元素
- pythonpandas函数详解_Python pandas常用函数详解
Senvn
本文研究的主要是pandas常用函数,具体介绍如下。1import语句importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportdatetimeimportre2文件读取df=pd.read_csv(path='file.csv')参数:header=None用默认列名,0,1,2,3...names=['A','B','C'
- Linux中open函数详解
460833359
LinuxClinuxopen函数
初级文件I/O函数(即不用缓存的I/O函数):open(打开文件)相关函数read,write,fcntl,create,lseek,close,link,stat,umask,unlink,fopen头文件#include#include#include定义函数intopen(constchar*pathname,intflags);intopen(constchar*pathname,intf
- linux open详解,Linux系统open函数详解
墨剑心
linuxopen详解
Linux系统中open函数主要作用就是打开和创建文件,可以根据参数来定制我们需要的文件的属性和用户权限等各种参数,下面良许教程网为大家分享一下Linux系统open函数具体使用方法。一、open函数用来干什么open函数在Linux下一般用来打开或者创建一个文件,我们可以根据参数来定制我们需要的文件的属性和用户权限等各种参数。二、open函数的定义和参数我们首先来看下open函数在Linux下的
- Linux下read函数详解
威桑
Linuxlinux服务器运维
在Linux中,read函数是最常用的系统调用之一,用于从文件或其他输入设备读取数据。它是低级别的I/O操作的核心,直接与操作系统的内核交互,提供了高效的数据读取方式。一、read函数简介read函数的声明如下:#includessize_tread(intfd,void*buf,size_tcount);其中:fd是文件描述符,代表了需要读取的文件或设备。文件描述符可以通过调用open或其他文件
- Python round函数详解
寒秋丶
Python自动化测试性能测试python开发语言测试开发软件开发软件测试自动化测试性能测试
大家好,在Python编程中,经常需要对数字进行舍入操作。无论是在金融领域的货币计算,还是科学计算中的数据处理,都可能需要使用到四舍五入功能。为了满足这一需求,Python提供了一个内置函数round(),它能够方便地对数字进行舍入操作。在本文中,将深入探讨Python中round()函数的用法和特性。将从基本语法开始,逐步深入,讨论该函数在不同情况下的行为,以及如何在实际编程中灵活运用。无论您是
- Linux下open函数详解
威桑
Linuxlinux
在Linux中,open函数是文件操作的核心系统调用之一,它用于打开文件并返回一个文件描述符,用于后续的文件操作如读取、写入、关闭等。open函数的原型#include#include#include#includeintopen(constchar*pathname,intflags);intopen(constchar*pathname,intflags,mode_tmode);open函数有
- 【Python】np.hstack()和np.vstack函数详解和示例
木彳
Python学习和使用过程积累python开发语言
本文通过函数原理和运行示例,对np.hstack()和np.vstack函数进行详解,以帮助大家理解和使用。更多Numpy函数详解和示例,可参考【Python】Numpy库近50个常用函数详解和示例,可作为工具手册使用目录np.hstack()函数解析运行示例一维数组二维数组np.vstack()函数解析运行示例np.hstack()np.hstack()是NumPy库中的一个函数,用于将两个或更
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 【Python】【Opencv】cv2.findContours()、cv2.drawContours()和cv2.contourArea()函数详解和运行示例
木彳
Python学习和使用过程积累pythonopencv开发语言人工智能计算机视觉
为帮助大家理解和使用cv2.findContours()、cv2.drawContours()和cv2.contourArea()函数,本文通过对函数内容进行详解,并通过运行示例更直观表述。函数解析cv2.findContours()cv2.drawContours()cv2.contourArea()运行示例运行示例示例详解函数解析cv2.findContours()cv2.findContou
- 【NLP5-RNN模型、LSTM模型和GRU模型】
一蓑烟雨紫洛
nlprnnlstmgrunlp
RNN模型、LSTM模型和GRU模型1、什么是RNN模型RNN(RecurrentNeuralNetwork)中文称为循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响2、R
- 探索深度学习的奥秘:从理论到实践的奇幻之旅
小周不想卷
深度学习
目录引言:穿越智能的迷雾一、深度学习的奇幻起源:从感知机到神经网络1.1感知机的启蒙1.2神经网络的诞生与演进1.3深度学习的崛起二、深度学习的核心魔法:神经网络架构2.1前馈神经网络(FeedforwardNeuralNetwork,FNN)2.2卷积神经网络(CNN)2.3循环神经网络(RNN)及其变体(LSTM,GRU)2.4生成对抗网络(GAN)三、深度学习的魔法秘籍:算法与训练3.1损失
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- 使用LSTM(长短期记忆网络)模型预测股票价格的实例分析
eeee~~
深度学习lstm人工智能rnn金融python神经网络
一:LSTM与RNN的区别LSTM(LongShort-TermMemory)是一种特殊的循环神经网络(RNN)架构。LSTM是为了解决传统RNN在处理长序列数据时遇到的梯度消失或梯度爆炸问题而设计的。在传统的RNN中,信息通过隐藏状态在时间步之间传递,但由于权重的重复应用,随着时间的推移,梯度可能会迅速减小或增大,导致网络难以学习长期依赖关系。LSTM通过引入了一种称为“门”(gates)的机制
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- Pytorch维度转换操作:view,reshape,permute,flatten函数详解
ghx3110
深度学习笔记pytorch维度转换操作
引言Pytorch中常见的维度转换函数有view,reshape,permute,flatten。本文将详细介绍这几个函数的作用与使用方式,并给出了具体的代码示例,希望能够帮助大家。常见的维度有四维:比如(batch,channel,height,width);三维:比如(b,n,c);二维:比如(h,w)。下面介绍如何使用上述函数进行维度之间的转换。1.view函数作用tensor.view()
- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- 【Python】set() 函数详解:集合运算、查找、去重 (附代码示例)
Avasla
Pythonpython数据分析
set函数介绍在Python中,集合(Set)是一种无序且元素唯一的数据结构。集合中的元素不能重复,即每个元素在集合中只能出现一次。集合是一种高效的查找结构。Python中的集合(set)通常是通过哈希表实现的。哈希表是一种数据结构,它使用哈希函数将键映射到存储桶(buckets)中,以便在常数时间复杂度内执行插入、删除和查找操作。换言之,无论集合中有多少个元素,查找某个元素所需的时间都是固定的,
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 第R3周:天气预测
Jessica2017lj
python
本文为[365天深度学习训练营]中的学习记录博客参考文章:第R3周:LSTM-火灾温度预测(训练营内部可读)作者:[K同学啊]任务说明:该数据集提供了来自澳大利亚许多地点的大约10年的每日天气观测数据。你需要做的是根据这些数据对RainTomorrow进行一个预测,这次任务任务与以往的不同,我增加了探索式数据分析(EDA),希望这部分内容可以帮助到大家。我的环境:●语言环境:Python3.8●编
- Python知识点:如何使用Python进行时间序列预测
杰哥在此
Python系列python开发语言编程面试
使用Python进行时间序列预测是一个非常常见的任务,可以应用于各种领域,如金融市场预测、销售量预测、天气预报等。时间序列预测的方法有很多,包括统计方法(如ARIMA模型)、机器学习方法(如支持向量机、决策树)、以及深度学习方法(如LSTM网络)。下面是一个简单的时间序列预测流程示例,使用Python和pandas、numpy、以及statsmodels库来实现ARIMA模型的时间序列预测。1.导
- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 02 使用 LSTM 进行时间序列预测
柒 魅。
时间序列预测lstm人工智能rnn
深度学习入门:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。我们将从基础知识讲起,提供代码示例,并解释每一步的技术细节。希望通过本文,大家能对LSTM有一个初步的了解,并能够在自己的项目中应用。1.什么是LSTM?LSTM(长短期记忆网络)是一种特殊的递归神经网络(RNN
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
呆萌的小透明
深度学习神经网络深度学习
第8章生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是
- LSTM与文本生成
Jiang_Immortals
人工智能lstm人工智能rnn
当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:准备数据集:首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。将文本序列划分为输入序列和目标序列。例如,对于句子“IloveAI”,输入序列是“Ilove”,目标序列是“AI”。构建LSTM模型:导入必要的库,如Keras和
- 【没发表过的创新点】基于BiTCN-LSTM的风电功率预测研究(Matlab代码实现)
荔枝科研社
lstmmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、BiTCN-LSTM模型概述三、基于BiTCN-LSTM的风电功率预测模型构建四、研究优势与挑战优势:挑战:五、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜
- 自然语言处理--Keras 实现LSTM生成文本
糯米君_
自然语言处理python深度学习nlplstm生成文本
令人兴奋的是,基于上一篇《keras实现LSTM字符级建模》的原理,使用LSTM我们可以根据之前文档出现过的字符来预测下一个字符,并且根据训练数据文本的特定的“风格”或“看法”生成新的文本。这很有趣,但我们将选择一个风格独特的人——威廉·莎士比亚(WilliamShakespeare),现根据他现有的作品来生成乍一看都有点儿像莎士比亚的作品的文本。fromnltk.corpusimportgute
- CNN+LSTM小目标物体追踪检测实现 完整代码数据可直接运行
计算机毕设论文
计算机毕设实战100例cnn人工智能深度学习小目标物体追踪追踪检测
视频讲解:CNN+LSTM小目标物体追踪检测实现_哔哩哔哩_bilibili项目效果:完整代码:importnumpyasnpimporttensorflowastffromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,LSTM,D
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后