Hive针对distinct的优化

hive针对count(distinct xxx)只产生一个reduce的优化。

0x00 造成的原因

由于使用了distinct,导致在map端的combine无法合并重复数据;对于这种count()全聚合操作时,即使设定了reduce task个数,set mapred.reduce.tasks=100;hive也只会启动一个reducer。这就造成了所有map端传来的数据都在一个tasks中执行,成为了性能瓶颈。

0x01 解决方式一(分治法)

该方法优势在于使用不同的reducer各自进行COUNT(DISTINCT)计算,充分发挥hadoop的优势,然后进行求和,间接达到了效果。需要注意的是多个tasks同时计算产生重复值的问题,所以分组需要使用到目标列的子串。

    SELECT 

        SUM(tmp_num) total

    FROM

        (select

            substr(uid,1,4) tag,

            count(distinct substr(uid,5)) tmp_total

        from

            xxtable

        group by

            substr(uid,1,4)

        )t1

  • 经过验证,该方法在5000万数据量的情况下,不优化需要5分钟,经过优化需要3分钟,还是有一定的提升的。

0x10 解决方式二(随机分组法)

核心是使用group by替代count(distinct)。

SELECT--3

    SUM(tc) 

FROM

    (select--2 

        count(*) tc,

        tag  

    from 

        (select--1

            cast(rand() * 100 as bigint) tag,

            user_id 

        from 

            xxtable

        group by  

            user_id

        )t1 

    group by 

        tag

    )t2;

  • 1层使用随机数作为分组依据,同时使用group by保证去重。
  • 2层统计各分组下的统计数。
  • 3层对分组结果求和。

经过验证,该方法在5000万数据量的情况下,不优化需要5分钟,经过优化需要2.5分钟,有进一步提升。

利用两次group by 解决count distinct 数据倾斜问题 :

  1. Set hive.exec.parallel=true;  
  2. Set hive.exec.parallel.thread.number=2;  
  3. From(  
  4.     Select  
  5.         Yw_type,  
  6.         Sum(case when type=’pv’ then ct endas pv,  
  7.         Sum(case when type=’pv’ then 1 endas uv,  
  8.         Sum(case when type=’click’ then ct endas ipv,  
  9.         Sum(case when type=’click’ then 1 endas ipv_uv  
  10.     from (  
  11.         select   
  12.             yw_type,log_type,uid,count(1) as ct  
  13.         from (  
  14.             select ‘total’ yw_type,‘pv’ log_type,uid from pv_log   
  15.             union all  
  16.             select ‘cat’ yw_type,‘click’ log_type,uid from click_log  
  17.         ) t group by yw_type,log_type  
  18.     ) t group by yw_type  
  19. ) t           
  20. Insert overwrite table tmp_1   
  21. Select pv,uv,ipv,ipv_uv   
  22. Where yw_type=’total’  
  23.   
  24. Insert overwrite table tmp_2  
  25. Select pv,uv,ipv,ipv_uv  
  26. Where yw_type=’cat’;    

. 利用随机数减少数据倾斜:

  1. select   
  2.     a.uid  
  3. from big_table_a a  
  4. left outer join big_table_b b  
  5. on b.uid = case when a.uid is null or length(a.uid)=0  
  6.         then concat('rd_sid',rand()) else a.uid end;  

 

你可能感兴趣的:(HIVE)