# Tensor Flow实现自编码器
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
import input_data
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train);
X_train = preprocessor.transform(X_train);
X_test = preprocessor.transform(X_test);
return X_train, X_test;
def get_random_block_from_data(data,batch_size):
start_index = np.random.randint(0,len(data) - batch_size);
return data[start_index:(start_index + batch_size)];
def xavier_init(fan_in, fan_out, constant = 1):
low = -constant * np.sqrt(6.0 / (fan_in + fan_out));
high = constant * np.sqrt(6.0 / (fan_in + fan_out));
return tf.random_uniform((fan_in, fan_out), minval = low, maxval = high, dtype = tf.float32);
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,optimizer = tf.train.AdamOptimizer(), scale=0.1):
self.n_input = n_input;
self.n_hidden = n_hidden;
self.transfer = transfer_function;
self.scale = tf.placeholder(tf.float32);
self.training_scale = scale;
network_weights = self._initialize_weights();
self.weights = network_weights;
self.x = tf.placeholder(tf.float32, [None,self.n_input]);
self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0));
self.optimizer = optimizer.minimize(self.cost);
init = tf.global_variables_initializer()
self.sess = tf.Session();
self.sess.run(init);
def _initialize_weights(self):
all_weights = dict();
all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden));
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],dtype = tf.float32));
all_weights['w2'] = tf.Variable(xavier_init(self.n_hidden, self.n_input));
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],dtype = tf.float32));
return all_weights;
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x:X, self.scale: self.training_scale});
return cost;
def calc_total_cost(self,X):
return self.sess.run(self.cost, feed_dict = {self.x:X, self.scale: self.training_scale});
def transfer(self,X):
return self.sess.run(self.hidden, feed_dict = {self.x:X, self.scale: self.training_scale});
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size = self.weights['b1']);
return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden});
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.scale: self.training_scale});
def getWeights(self):
return self.sess.run(self.weights['w1']);
def getBiases(self):
return self.sess.run(self.weights['b1']);
mnist = input_data.read_data_sets('MNIST_data', one_hot = True);
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images);
n_samples = int(mnist.train.num_examples);
training_epochs = 20;
batch_size = 128;
display_step = 1;
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784, n_hidden = 200, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), scale = 0.01);
for epoch in range(training_epochs):
avg_cost = 0.;
total_batch = int(n_samples/batch_size);
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size);
cost = autoencoder.partial_fit(batch_xs);
avg_cost += cost / n_samples * batch_size;
if epoch % display_step == 0 :
print("Epoch:", '%04d' % (epoch + 1), "cost = ", "{:0.9f}".format(avg_cost));
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)));