tensorflow学习序列——自动编码AutoEncode

# Tensor Flow实现自编码器
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
import input_data




def standard_scale(X_train, X_test):
	preprocessor = prep.StandardScaler().fit(X_train); 
	X_train = preprocessor.transform(X_train); 
	X_test = preprocessor.transform(X_test); 
	return X_train, X_test; 

def get_random_block_from_data(data,batch_size): 
	start_index = np.random.randint(0,len(data) - batch_size); 
	return data[start_index:(start_index + batch_size)]; 
	


def xavier_init(fan_in, fan_out, constant = 1):
    low = -constant * np.sqrt(6.0 / (fan_in + fan_out));
    high = constant * np.sqrt(6.0 / (fan_in + fan_out));
    return tf.random_uniform((fan_in, fan_out), minval = low, maxval = high, dtype = tf.float32);


class AdditiveGaussianNoiseAutoencoder(object):
	def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,optimizer = tf.train.AdamOptimizer(), scale=0.1):
		self.n_input = n_input; 
		self.n_hidden = n_hidden; 
		self.transfer = transfer_function; 
		self.scale = tf.placeholder(tf.float32); 
		self.training_scale = scale; 
		network_weights = self._initialize_weights(); 
		self.weights = network_weights; 
		self.x = tf.placeholder(tf.float32, [None,self.n_input]); 
		self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1']))
		self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
		self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)); 
		self.optimizer = optimizer.minimize(self.cost); 
		init = tf.global_variables_initializer()
		self.sess = tf.Session(); 
		self.sess.run(init); 
		
	def _initialize_weights(self):
		all_weights = dict(); 
		all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden)); 
		all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],dtype = tf.float32)); 
		all_weights['w2'] = tf.Variable(xavier_init(self.n_hidden, self.n_input)); 
		all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],dtype = tf.float32)); 
		return all_weights; 
	
	def partial_fit(self, X): 
		cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x:X, self.scale: self.training_scale}); 
		return cost; 
	
	def calc_total_cost(self,X): 
		return self.sess.run(self.cost, feed_dict = {self.x:X, self.scale: self.training_scale}); 
		
	def transfer(self,X): 
		return self.sess.run(self.hidden, feed_dict = {self.x:X, self.scale: self.training_scale}); 
	
	def generate(self, hidden = None):
		if hidden is None: 
			hidden = np.random.normal(size = self.weights['b1']); 
		return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden}); 
	
	def reconstruct(self, X): 
		return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.scale: self.training_scale}); 
	
	def getWeights(self): 
		return self.sess.run(self.weights['w1']); 
	
	def getBiases(self):
		return self.sess.run(self.weights['b1']); 
		
	
	
mnist = input_data.read_data_sets('MNIST_data', one_hot = True); 
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images); 
n_samples = int(mnist.train.num_examples); 
training_epochs = 20; 
batch_size = 128; 
display_step = 1; 
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784, n_hidden = 200, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), scale = 0.01); 
for epoch in range(training_epochs): 
	avg_cost = 0.; 
	total_batch = int(n_samples/batch_size); 
	for i in range(total_batch): 
		batch_xs = get_random_block_from_data(X_train, batch_size); 
		cost = autoencoder.partial_fit(batch_xs); 
		avg_cost += cost / n_samples * batch_size; 
	if epoch % display_step == 0 : 
		print("Epoch:", '%04d' % (epoch + 1), "cost = ", "{:0.9f}".format(avg_cost)); 
print("Total cost: " + str(autoencoder.calc_total_cost(X_test))); 				

你可能感兴趣的:(机器学习,tensorflow,深度学习)