图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)

1. 参考文献

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第1张图片

2. 模型实现

% 论文: LIME: A Method for Low-light Image Enhancement
% 作者:Xiaojie Guo
% 链接:
% Author: HSW
% Date: 2018-04-27

clc;
close all;
clear;

addpath(genpath('removeHaze\')); 
addpath(genpath('BM3D\')); 

% img = imread('timg1.png');
img = imread('timg2.png');
% img = imread('timg3.png');
% img = imread('timg4.png');
figure;
imshow(img, []);
title('原图像');
Model = 'Normal'; % 'Dehaze' / 'Normal'
method = 'SA'; 
denoiseFlag = 0;  % = 0时表示不进行噪声处理; = 1时表示进行噪声处理
if size(img, 3) == 3
    img_in = im2double(img); 
    img_out = Lime_enhance(img_in, Model, method, 0, 0);     
    figure;
    imshow(img_out, []);
    title(['增强结果(', 'Model:', Model, ' | Smooth Method:', method, ')']);
else
    disp('LIME模型处理彩色图像');
end

2.1 LIME模型相关代码

function T = Illumination(L, method)
% Inputs:
%        L:
% Outputs:
%        T:

if strcmp(method, 'max_c') == 1
    T = max(L, [], 3);
elseif strcmp(method, 'min_c') == 1
    T = min(L, [], 3); 
end 

end



function T_out = Illumination_filter(T_in, method, ksize, sigma1, sigma2, alpha, sharpness, maxIter)
% Inputs:
%        T_in:
%        ksize: 窗口的大小为ksize x ksize
%        method:
%        sigma1:
%        sigma2:
%        alpha:
%        sharpness:
%        maxIter:
% Outputs:
%         T_out:
%
% Author: HSW
% Date: 2018-04-27
%
if ~exist('method','var')
    method = 'Max';
end

if strcmp(method, 'Max') == 1
    if ~exist('ksize','var')
        ksize = 5;
    end
elseif strcmp(method, 'Mean') == 1
    if ~exist('ksize','var')
        ksize = 5;
    end
elseif strcmp(method, 'BF') == 1
    if ~exist('ksize','var')
        ksize = 5;
    end
    
    if ~exist('sigma1','var')
        sigma1 = 5;
    end
    
    if ~exist('sigma2','var')
        sigma2 = 7;
    end
elseif strcmp(method, 'TV') == 1
    if ~exist('alpha','var')
        alpha = 0.15;
    end
    
    if ~exist('maxIter','var')
        maxIter = 50;
    end
elseif strcmp(method, 'SA') == 1
    if ~exist('alpha','var')
        alpha = 0.15;
    end
    
    if ~exist('sigma1','var')
        sigma1 = 5;
    end
    
    if ~exist('sharpness', 'var')
        sharpness = 0.02;
    end
    
    if ~exist('maxIter','var')
        maxIter = 4;
    end
end


if strcmp(method, 'Max') == 1
    % 局部极大值
    T_out = filter_Max(T_in, ksize);
elseif strcmp(method, 'Mean') == 1
    T_out = filter_Mean(T_in, ksize);
elseif strcmp(method, 'BF') == 1
    % 双边滤波
    T_out = filter_BF(T_in, ksize, sigma1, sigma2);
elseif strcmp(method, 'TV') == 1
    T_out = filter_TV(T_in, alpha, maxIter);
elseif strcmp(method, 'SA') == 1
    T_out = filter_SA(T_in, alpha, sigma1, sharpness, maxIter);
end
end

function T_out = filter_Max(T_in, ksize)
% Inputs:
%        T_in:
%        ksize:
% Outputs:
%        T_out:
% Author: HSW
% Date: 2018-04-27
%

[m, n] = size(T_in);
hsize = floor(ksize / 2);
T_out = T_in;
for i = 1:m
    for j = 1:n
        patch = T_in(max(1, i - hsize):min(m, i + hsize), max(1, j - hsize):min(n, j + hsize));
        T_out(i,j) = max(max(patch));
    end
end
disp('run filter_max');
end

function T_out = filter_Mean(T_in, ksize)
% Inputs:
%        T_in:
%        ksize:
% Outputs:
%        T_out:
% Author: HSW
% Date: 2018-04-27
%

[m, n] = size(T_in);
hsize = floor(ksize / 2);
T_out = T_in;
for i = 1:m
    for j = 1:n
        patch = T_in(max(1, i - hsize):min(m, i + hsize), max(1, j - hsize):min(n, j + hsize));
        T_out(i,j) = mean(mean(patch));
    end
end
disp('run filter_mean');
end

function T_out = filter_BF(T_in, ksize, sigma1, sigma2)
% Inputs:
%        T_in:
%        ksize:
%        sigma1:
%        sigma2:
% Outputs:
%        T_out:
% Author: HSW
% Date: 2018-04-27
%

[m, n] = size(T_in);
hsize = floor(ksize / 2);
T_out = T_in;

xx = -hsize : hsize;
yy = -hsize : hsize;
kernel1 = zeros(ksize, ksize);
for ii = 1:ksize
    for jj = 1:ksize
        kernel1(ii, jj) = exp(-(xx(ii) * yy(jj) / sigma1)^2);
    end
end
kernel1 = kernel1 ./ sum(sum(kernel1));  % 归一化

for i = hsize + 1:m - hsize
    for j = hsize + 1:n - hsize
        kernel2 = exp(-((T_in(i - hsize : i + hsize, j - hsize:j + hsize) - repmat(T_in(i,j), ksize, ksize)) ./ sigma2).^2);
        kernel2 = kernel2 ./ sum(sum(kernel2));
        T_out(i,j) = sum(sum(kernel1 .* kernel2 .* T_in(i - hsize : i + hsize, j - hsize : j + hsize) ./ sum(sum(kernel1 .* kernel2))));
    end
end
end

function T_out = filter_TV(T_in, alpha, maxIter)
% Inputs:
%        T_in:
%        alpha:
%        maxIter:
% Outputs:
%        T_out:
% Author: HSW
% Date: 2018-04-27
%
epsilon = 0.00001;
dt = 0.1; 
J = T_in;
for iter = 1:maxIter
    
    DfJx=J([2:end end],:)-J;     %函数关于X的一阶偏导(向后差分)
    DbJx=J-J([1 1:end-1],:);     %函数关于X的一阶偏导(向前差分)
    DfJy=J(:,[2:end end])-J;     %函数关于Y的一阶偏导(向后差分)
    DbJy=J-J(:,[1 1:end-1]);     %函数关于Y的一阶偏导(向前差分)
    
    TempDJx=(epsilon+DfJx.*DfJx+((sign(DfJy)+sign(DbJy)).*min(abs(DfJy),abs(DbJy))./2).^2).^(1/2);%求梯度的模    
    TempDJy=(epsilon+DfJy.*DfJy+((sign(DfJx)+sign(DbJx)).*min(abs(DfJx),abs(DbJx))./2).^2).^(1/2);
      
    DivJx=DfJx./(TempDJx + (TempDJx == 0) * epsilon);    
    DivJy=DfJy./(TempDJy + (TempDJy == 0) * epsilon);

    %求散度    
    Div=DivJx-DivJx([1 1:end-1],:)+DivJy-DivJy(:,[1 1:end-1]);  
    J= J + dt * alpha* Div - dt * (J-T_in);                  %产生迭代
end
T_out = J;
end

function T_out = filter_SA(T_in, alpha, sigma, sharpness, maxIter)
% Inputs:
%        T_in:
%        alpha:
%        sigma:
%        maxIter:
%        sharpness:
% Outputs:
%        T_out:
% Author: HSW
% Date: 2018-04-27
%
% 论文描述的解法没有完全理解,就按照论文中的文献[17]的迭代法进行实现,只是不迭代更新Wh 和 Wv
T_out = tsmooth(T_in, alpha, sigma, sharpness, maxIter);
end


function S = tsmooth(I,lambda,sigma,sharpness,maxIter)
% 参考代码: https://blog.csdn.net/songzitea/article/details/12851723#
if (~exist('lambda','var'))
    lambda=0.01;
end
if (~exist('sigma','var'))
    sigma=3.0;
end
if (~exist('sharpness','var'))
    sharpness = 0.02;
end
if (~exist('maxIter','var'))
    maxIter=4;
end
I = im2double(I);
x = I;
sigma_iter = sigma;
lambda = lambda/2.0;
dec=2.0;
[wx, wy] = computeTextureWeights(x, sigma_iter, sharpness); % 与文献[17]不同,文献[17]每次迭代都改变wx, wy
for iter = 1:maxIter
    % [wx, wy] = computeTextureWeights(x, sigma_iter, sharpness);
    x = solveLinearEquation(I, wx, wy, lambda);
    sigma_iter = sigma_iter/dec;
    if sigma_iter < 0.5
        sigma_iter = 0.5;
    end
end
S = x;
end

function [retx, rety] = computeTextureWeights(fin, sigma,sharpness)

fx = diff(fin,1,2);
fx = padarray(fx, [0 1 0], 'post');
fy = diff(fin,1,1);
fy = padarray(fy, [1 0 0], 'post');

vareps_s = sharpness;
vareps = 0.001;

wto = max(sum(sqrt(fx.^2+fy.^2),3)/size(fin,3),vareps_s).^(-1);
fbin = lpfilter(fin, sigma);
gfx = diff(fbin,1,2);
gfx = padarray(gfx, [0 1], 'post');
gfy = diff(fbin,1,1);
gfy = padarray(gfy, [1 0], 'post');
wtbx = max(sum(abs(gfx),3)/size(fin,3),vareps).^(-1);
wtby = max(sum(abs(gfy),3)/size(fin,3),vareps).^(-1);
retx = wtbx.*wto;
rety = wtby.*wto;

retx(:,end) = 0;
rety(end,:) = 0;

end

function ret = conv2_sep(im, sigma)
ksize = bitor(round(5*sigma),1);
g = fspecial('gaussian', [1,ksize], sigma);
ret = conv2(im,g,'same');
ret = conv2(ret,g','same');
end

function FBImg = lpfilter(FImg, sigma)
FBImg = FImg;
for ic = 1:size(FBImg,3)
    FBImg(:,:,ic) = conv2_sep(FImg(:,:,ic), sigma);
end
end

function OUT = solveLinearEquation(IN, wx, wy, lambda)
[r,c,ch] = size(IN);
k = r*c;
dx = -lambda*wx(:);
dy = -lambda*wy(:);
B(:,1) = dx;
B(:,2) = dy;
d = [-r,-1];
A = spdiags(B,d,k,k);
e = dx;
w = padarray(dx, r, 'pre'); w = w(1:end-r);
s = dy;
n = padarray(dy, 1, 'pre'); n = n(1:end-1);
D = 1-(e+w+s+n);
A = A + A' + spdiags(D, 0, k, k);
if exist('ichol','builtin')
    L = ichol(A,struct('michol','on'));
    OUT = IN;
    for ii=1:ch
        tin = IN(:,:,ii);
        [tout, flag] = pcg(A, tin(:),0.1,100, L, L');
        OUT(:,:,ii) = reshape(tout, r, c);
    end
else
    OUT = IN;
    for ii=1:ch
        tin = IN(:,:,ii);
        tout = A\tin(:);
        OUT(:,:,ii) = reshape(tout, r, c);
    end
end

end


function img_out = Lime_enhance(img_in, Model, method, denoiseFlag, displayFlag)
% Inputs:
%        Model: 'Normal' 论文公式(1)模型, 'Dehaze'论文公式(2)模型
%        method: 'Max' / 'Mean' / 'BF' / 'TV' / 'SA'
% Outputs:
%        img_out:
%
epsilon = 0.0001;
[m, n, dims] = size(img_in);

if strcmp(Model, 'Normal') == 1
    % 估计光照亮度
    T = Illumination(img_in, 'max_c'); % 亮通道
    
    if displayFlag
        figure;
        imshow(T,[]);
        title('T');
    end
    
    % 亮通道光滑
    smoothT = Illumination_filter(T, method);
    
    if displayFlag
        figure;
        imshow(smoothT, []);
        title('smoothT');
    end
    
    % gama变换
    gama = 0.8;
    gamaT = smoothT.^gama;
    
    if displayFlag
        figure;
        imshow(gamaT, []);
        title('gamaT');
    end
    
    % I = img_in ./ repmat((gamaT + (gamaT == 0) * epsilon), [1, 1, 3]);
    I = 1 - ((ones([m, n, dims]) - img_in) - repmat(0.95 * (1 - gamaT), [1, 1, 3])) ./ repmat((gamaT + (gamaT == 0) * epsilon), [1, 1, 3]);
    I(I < 0) = 0;
    I(I > 1) = 1;
    
    if displayFlag
        figure;
        imshow(I, []);
        title('未除噪增强图像');
    end
    
    % 进行噪声处理
    if denoiseFlag == 1
        I_noise = uint8(I .* 255);
        I_YCbCr = rgb2ycbcr(I_noise);
        Y = I_YCbCr(:, :, 1);
        maxY = max(max(Y));
        minY = min(min(Y));
        % BM3D去噪
        Y_denoise = BM3D(Y, 0, 5, 1, 1);
        maxY_denoise = max(max(Y_denoise));
        minY_denoise = min(min(Y_denoise));
        Y_denoise = (double(Y_denoise) - double(minY_denoise)) ./ double(maxY_denoise - minY_denoise) .* double(maxY - minY) + double(minY);
        I_YCbCr(:, :, 1) = Y_denoise;
        I_denoise = ycbcr2rgb(I_YCbCr);
        I_denoise = double(I_denoise) ./ 255.;
        % 图像融合
        I = double(I) .* double(repmat(gamaT, [1, 1, 3])) + double(I_denoise) .* double(repmat((1 - gamaT), [1, 1, 3]));
    end
    
elseif strcmp(Model, 'Dehaze') == 1
    img_in = 1 - img_in;
    ksize = 5;
    [img_in, I, J, T_est, T, A] = removeHaze(img_in,ksize);
    I = 1 - I;
end

img_out = I;
end

2.2 RemoveHaze文件夹代码

function T_colored = colorTransmission( T )
%COLORTRANSMISSION Summary of this function goes here
%   Detailed explanation goes here

t = size(T);
T_colored = zeros(t(1), t(2), 3);

maxT = max(max(max(T)));
minT = min(min(min(T)));
avg = (maxT + minT)/2;

T_colored(:,:,1) = T > ( maxT - avg/2 );
T_colored(:,:,2) = ((minT+avg/2) < T) .* (T < (maxT-avg/2));
T_colored(:,:,3) = T < minT+avg/2;

end


function A = estimateA( I, J, numPixels )
%ESTIMATEA Summary of this function goes here
%   Detailed explanation goes here

    % Make a list of the brightest pixels
    brightestJ = zeros(numPixels,3);
    [x_dim y_dim] = size(J);
    for i = 1:x_dim
        for j = 1:y_dim
            [minElement, index] = min(brightestJ(:,3));
            if J(i,j) > minElement
                brightestJ(index,:) = [i j J(i,j)];
            end
        end
    end

    % Find the highest intensity pixel from the original Image using the
    % list calculated above
    highestIntensity = zeros(1,3);
    for i = 1:numPixels
        x = brightestJ(i,1);
        y = brightestJ(i,2);
        intensity = sum(I(x,y,:));
        if intensity > sum(highestIntensity)
            highestIntensity = I(x,y,:);
        end
    end
    
    % Set as the Atmosphere lighting
    dimI = size(I);
    if numel(dimI) == 3
    
      A = zeros(x_dim,y_dim,3);
  
      for a = 1:dimI(3)
            A(:,:,a) = A(:,:,a) + highestIntensity(:,:,a);
      end
    else
      A = zeros(x_dim,y_dim);
      A(:,:) = A(:,:) + highestIntensity(:,:);
    end
    
end


function [ T ] = generateLaplacian( I, T_est)
%GENERATELAPLACIAN2 Summary of this function goes here
%   Detailed explanation goes here

    dimI = size(I);

    % Taking a box around the pixel
    win_size = 1;
    win_pixels = 9;
    
    % As per equation in paper when computing the laplacian
    % U is to be added to the window covariance
    U = .000001 ./win_pixels.*eye(3);
    
    windowIndicies = 1:dimI(1)*dimI(2);
    windowIndicies = reshape(windowIndicies,dimI(1),dimI(2));
    
    totalElements = win_pixels^2 * ( dimI(1) - 2 ) * ( dimI(2) - 2 );
    
    indicies_x = ones(1,totalElements);
    indicies_y = ones(1,totalElements);
    elements = zeros(1,totalElements);
    
    count = 0;
    for i = (1+win_size):(dimI(2)-win_size)
        for j = (1+win_size):(dimI(1)-win_size)
            
            % Get the window around i and j
            rangeI = i-win_size:i+win_size;
            rangeJ = j-win_size:j+win_size;
            window = I(rangeJ, rangeI,:);
            
            % Convert to a vector
            % each column representing a color
            window_vector = reshape(window,win_pixels,3);
            
            % Calculate the mean and difference
            window_mean = mean(window_vector)';
            diff = window_vector' - repmat(window_mean,1,win_pixels);
            
            % both methods of computing covariant produce the same results
            window_covariance = (diff*diff'/win_pixels)+U;
            %window_covariance = (window_vector'*window_vector/win_pixels - window_mean*window_mean')+U;
            
            % Compute the elements in the L matrix
            % easier to just store these in a spares matrix
            L_element = eye(win_pixels) - (1 + diff' * inv(window_covariance) * diff) ./ win_pixels;
            L_element = (L_element(:))'; % reshape it to a single vector
            
            % Calculate the cordinates in the L matrix that we are dealing
            % with.  [ coordinates required in a sparse matrix ]
            
            % Step 1.  Get the indicies of the current window
            window_indicies = reshape(windowIndicies(rangeJ,rangeI),1,win_pixels);
            
            % Step 2.  Create all combinations of pixels
            x = repmat(window_indicies,win_pixels,1);
            y = x';
            
            % reformat combination of pixels
            x = (x(:))';
            y = (y(:))';
            
            
            indicies_x((count*(win_pixels^2) + 1):(count*(win_pixels^2)+(win_pixels^2))) = x;
            indicies_y((count*(win_pixels^2) + 1):(count*(win_pixels^2)+(win_pixels^2))) = y;            
            elements((count*(win_pixels^2) + 1):(count*(win_pixels^2)+(win_pixels^2))) = L_element;
            
            count = count + 1;
        end
    end
    
    L = sparse(indicies_x,indicies_y,elements,dimI(1)*dimI(2),dimI(1)*dimI(2));
    T = (L + .0001 .* speye(size(L))) \ T_est(:) .* .0001;
    T = reshape(T, size(T_est));
end


function J = makeDarkChannel( I, patch_size )
    % Assuming that this is RGB but overall not requiring it
    [image_x image_y channels] = size(I);
    J = zeros(image_x,image_y);
    tmpPatch = double(zeros(2*floor(patch_size/2),2*floor(patch_size/2),channels));
    
    I = padarray(I, [floor(patch_size/2) floor(patch_size/2)], 'symmetric');
    
    % I think the size actually returns in order [y x ~ but doesn't really
    % matter as long as order is kept
    
    % padarray resizes the example 300x400 to 314x414.  
    % Use original image_x, image_y and add 2*floor(patch_size/2)
    for i = 1:image_x
        minX = i;
        maxX = (i + 2*floor(patch_size/2));
        for j = 1:image_y
            minY = j;
            maxY = (j + 2*floor(patch_size/2));
            
            % copy all color channels over
            tmpPatch = I(minX:maxX, minY:maxY,:);
            J(i,j) = min(tmpPatch(:)); % find min across all channels
        end
    end

end


%function [I J T A L] = removeHaze( imageName, patch_size )
function [I I_out J T_est T A] = removeHaze( I, patch_size )
% Used to make image more realistic due to seeming unbelievable
% when there is no sense of depth
aerialPerspective = 0.95;
% Make grayscales to color
if numel(size(I)) == 2
    [x y] = size(I);
    tmpI = zeros(x,y,3);
    for c = 1:3
        tmpI(:,:,c) = I;
    end
    I = tmpI;
end

J = makeDarkChannel(I,patch_size);
%  Section 4.4
%  Estimate Atmosphere
%  We first pick the top 0.1% bright- est pixels in the dark channel.
%  These pixels are most haze- opaque (bounded by yellow lines in
%  Figure 6(b)). Among these pixels, the pixels with highest intensity
%  in the input image I is selected as the atmospheric light.
%  TL;DR  TAKE .1% of the brightest pixels
dimJ = size(J);
numBrightestPixels = ceil(0.001 * dimJ(1) * dimJ(2)); % Use the cieling to overestimate number needed
A = estimateA(I,J,numBrightestPixels);

% Section 4.1
%   Estimate the Transmission Equation 12
T_est = 1 - aerialPerspective*makeDarkChannel(I./A,patch_size);
[T] = generateLaplacian(I,T_est);
dehazed = zeros(size(I));

% Equation 16
for c = 1:3
    dehazed(:,:,c) = (I(:,:,c) - A(:,:,c))./(max(T, .1)) + A(:,:,c);
end

I_out = dehazed;

beep
end


2.3 BM3D文件夹相关代码

function img_out = BM3D(img_in, tran_mode, sigma, displayMidResult, displayProcess)
% 参考文献: 《Image denoising by sparse 3D transform-domain collaborative filtering》
%           《An Analysis and Implementation of the BM3D Image Denoising Method》
% Inputs:
%        img_in: 噪声图像,必须为矩形方阵
%        tran_mode: = 0, fft; = 1, dct; = 2, dwt, = 3, db1
%        displayMidResult: 0/1
%        displayProcess: 0/1
% Outputs: 
%        img_out: 去噪图像
% 代码下载链接: http://www.pudn.com/Download/item/id/2703664.html
%
% 
if ~exist('tran_mode', 'var') 
    tran_mode = 0; 
end 

if ~exist('sigma', 'var') 
    sigma = 10; 
end 

if ~exist('displyaMidResult', 'var') 
    displayMidResult = 0; 
end 

if ~exist('displayProcess', 'var') 
    displayProcess = 0; 
end 

img_noise = img_in;
[row,col] = size(img_noise); 
tic
% first step
kHard=8;          % 块大小
pHard=4;          % 块移动间隔
lambda_distHard=0;% 求相似的距离时,变换后,收缩的阈值
nHard=40;         % 搜索窗口大小
NHard=28;         % 最多相似块个数
tauHard=5000;     % 最大的相似距离for fft
beta=2;
% tauHard=50000;% for dct
if(tran_mode==0)        %fft
    lambda2d=400;
    lambda1d=500;
    lambda2d_wie=50;
    lambda1d_wie=500;
elseif(tran_mode == 1)  %dct
    lambda2d=50;
    lambda1d=80;
    lambda2d_wie=20;
    lambda1d_wie=60;
elseif(tran_mode == 2)  %dwt
    lambda2d=50;
    lambda1d=80;
    lambda2d_wie=20;
    lambda1d_wie=60;
end

%kaiser 窗,实际代码中可能没有用到。
kaiser_win=kaiser(kHard,1)*kaiser(kHard,1)';
%图像分块,并且做变换,为找相似块做准备
[block,tran_block,block2row_idx,block2col_idx]=im2block(img_noise,kHard,pHard,lambda_distHard,0);
% block number row:行方向上的 块的个数
bn_r=floor((row-kHard)/pHard)+1;
bn_c=floor((col-kHard)/pHard)+1;
%基础估计的图像
img_basic_sum=zeros(row,col);
img_basic_weight=zeros(row,col);

%显示处理进度
is_disp_process    = displayProcess;
process_step_total = bn_r/10;
process_step_cnt   = 0;
%基础估计
fprintf('BM3D: First Stage Start...\n');
%对每个块遍历
for i=1:1:bn_r
    if((is_disp_process) &&(i>process_step_total))
        process_step_total=process_step_total+bn_r/10;
        process_step_cnt=process_step_cnt+1;
        fprintf('  process:%d/10\n',process_step_cnt)
    end
    for j=1:1:bn_c
        [sim_blk,sim_num,sim_blk_idx]=search_similar_block(i,j,block,tran_block,kHard,floor(nHard/pHard),...
            bn_r,bn_c,tauHard,NHard);
        %toc
        %         test fine_similar block
        num_sim=size(sim_blk_idx,3);
        %tic
        %做3D变换,并且用阈值收缩
        tran3d_blk_shrink=transform_3d(sim_blk,tran_mode,lambda2d,lambda1d);
        %toc
        NHard_P=nnz(tran3d_blk_shrink);%non_zero_num
        if(NHard_P >1)
            wHard_P=1/NHard_P;
        else
            wHard_P=1;
        end
        Wwin2D= kaiser(kHard, beta) * kaiser(kHard, beta)'; % Kaiser window used in the hard-thresholding part
        wWien_P=Wwin2D*wHard_P;
        %wHard_P=wHard_P*kaiser_win;% 要不要?
        %tic
        % 3D逆变换
        blk_est=inv_transform_3d(tran3d_blk_shrink,tran_mode);
        %pause
        %可能是复数,虚部为0或接近于0,所以只取实部
        %max(abs(imag(blk_est(:))))
        blk_est=real(blk_est);
        %toc
        %tic
        for k=1:sim_num
            idx=sim_blk_idx(k);
            ir=block2row_idx(idx);
            jr=block2col_idx(idx);
            %实在算不清了。利用提前保存好 块索引和左上角坐标的 对应关系
            %ir=floor((idx-1)*pHard/col)+1;
            %jr=(idx-1)*pHard-(i-1)*col+1;
            img_basic_sum(ir:ir+kHard-1,jr:jr+kHard-1)=...
                img_basic_sum(ir:ir+kHard-1,jr:jr+kHard-1)+wHard_P*blk_est(:,:,k);
            img_basic_weight(ir:ir+kHard-1,jr:jr+kHard-1)=...
                img_basic_weight(ir:ir+kHard-1,jr:jr+kHard-1)+wHard_P;
        end
        %toc
        %pause
    end
end
fprintf('BM3D: First Stage End...\n');
img_basic=img_basic_sum./img_basic_weight;

if displayMidResult
    figure;
    imshow(img_basic,[]);
    title('BM3D:Fist Stage Result'); 
%     psnr=20*log10(255/sqrt(mean((img_basic(:)-img(:)).^2)))
end

% second step
kWien=kHard;
pWien=pHard;
lambda_distWien=lambda_distHard;
nWien=nHard;%搜索窗口大小
NWien=NHard;%最多相似块个数
tauWien=tauHard;
sigma2=sigma*sigma;

[block_basic,tran_block_basic,block2row_idx_basic,block2col_idx_basic]=im2block(img_basic,kWien,pWien,lambda_distWien,0);
bn_r=floor((row-kWien)/pWien)+1;
bn_c=floor((col-kWien)/pWien)+1;
img_wien_sum=zeros(row,col);
img_wien_weight=zeros(row,col);

process_step_total=bn_r/10;
process_step_cnt=0;
fprintf('BM3D: Second Stage Start...\n');
for i=1:1:bn_r
    if((is_disp_process) &&(i>process_step_total))
        process_step_total=process_step_total+bn_r/10;
        process_step_cnt=process_step_cnt+1;
        fprintf('  process:%d/10\n',process_step_cnt)
    end
    for j=1:1:bn_c
        [sim_blk_basic,sim_num,sim_blk_basic_idx]=search_similar_block(i,j,block_basic,tran_block_basic,kWien,floor(nWien/pWien),...
            bn_r,bn_c,tauWien,NWien);
        %对基础块进行3D变换,求得omega_P.
        tran3d_blk_basic=transform_3d(sim_blk_basic,tran_mode,lambda2d_wie,lambda1d_wie);
        omega_P=(tran3d_blk_basic.^2)./((tran3d_blk_basic.^2)+sigma2);
        %用 基础块得到的相似块的索引,来找到 噪声块的相似块,并进行3D变换
        tran3d_blk=transform_3d(block(:,:,sim_blk_basic_idx),tran_mode,lambda2d_wie,lambda1d_wie);
        blk_est=inv_transform_3d(omega_P.*tran3d_blk,tran_mode);
        %可能是复数,虚部为0或接近于0,所以只取实部
        %max(abs(imag(blk_est(:))))
        blk_est=real(blk_est);
        NWien_P=nnz(omega_P); %IPOL文中8式中矩阵范数?应该如何求??
        if(NWien_P >1)
            wWien_P=1/(NWien_P);
        else
            wWien_P=1;
        end
        
        %         wWien_P=wWien_P/sigma2;
        for k=1:sim_num
            idx=sim_blk_basic_idx(k);
            ir=block2row_idx_basic(idx);
            jr=block2col_idx_basic(idx);
            img_wien_sum(ir:ir+kWien-1,jr:jr+kWien-1)=...
                img_wien_sum(ir:ir+kWien-1,jr:jr+kWien-1)+wWien_P*blk_est(:,:,k);
            img_wien_weight(ir:ir+kWien-1,jr:jr+kWien-1)=...
                img_wien_weight(ir:ir+kWien-1,jr:jr+kWien-1)+wWien_P;
        end
    end
end
fprintf('BM3D: Second Stage End\n');
img_wien=img_wien_sum./img_wien_weight;

if displayMidResult
    figure;
    imshow(img_wien,[]);
    title('BM3D: 去噪结果'); 
%     psnr=20*log10(255/sqrt(mean((img_wien(:)-img(:)).^2)))
end
img_out = img_wien;
toc


% 图像分块,并且做变换,为找相似块做准备
% k:块大小,p:块移动步长,lambda2D,delta 收缩阈值
% block 返回的块,transform_block 变换后的块
% block2row_idx,block2col_idx 为保存的 块索引 与 块左上角在图像中坐标的 对应关系
function [block,transform_block,block2row_idx,block2col_idx] =im2block(img,k,p,lambda2D,delta)
    [row,col]=size(img);
    %这个阈值该用什么公式呢??
    thres=lambda2D*delta*sqrt(2*log(row*col));
    % r_num:行方向 上 应该有 多少个块
    r_num=floor((row-k)/p)+1;
    c_num=floor((col-k)/p)+1;
    block=zeros(k,k,r_num*c_num);
    block2row_idx=[];
    block2col_idx=[];
    cnt=1;
    for i=0:1:r_num-1
        rs=1+i*p;
        for j=0:1:c_num-1
            cs=1+j*p;
            block(:,:,cnt)=img(rs:rs+k-1,cs:cs+k-1);
            block2row_idx(cnt)=rs;
            block2col_idx(cnt)=cs;
            %该用什么变换呢??
            tr_b=fft2(block(:,:,cnt));
%             tr_b=dct2(block(:,:,cnt));
            idx=find(abs(tr_b)

  % 3D逆变换
function [blk_est]=inv_transform_3d(blk_tran3d,tran_mode)
    global blk_tran1d_s;
    global blk_2d_s;
    [m,n,blk_num]=size(blk_tran3d);
 
    blk_invtran1d=zeros(m,n,blk_num);
    blk_est=zeros(m,n,blk_num);
 
    if(tran_mode==0)    %fft
        for i=1:1:m
            for j=1:1:n
                blk_invtran1d(i,j,:)=ifft(blk_tran3d(i,j,:));
            end
        end
        for i=1:1:blk_num
            blk_est(:,:,i)=ifft2(blk_invtran1d(:,:,i));
        end
    elseif(tran_mode==1)  %dct
        for i=1:1:m
            for j=1:1:n
                blk_invtran1d(i,j,:)=idct(blk_tran3d(i,j,:));
            end
        end
        for i=1:1:blk_num
            blk_est(:,:,i)=idct2(blk_invtran1d(:,:,i));
        end
    elseif(tran_mode==2)    %dwt
        blk_num=length(blk_2d_s);
        blk_c=waverec2(blk_tran3d,blk_tran1d_s,'haar');
        blk_est=[];
        for i=1:1:blk_num
            blk_est(:,:,i)=waverec2(blk_c(:,i),blk_2d_s{i},'Bior1.5');
        end
 
    else
        error('tran_mode error');
    end


% 搜索相似块
% ik,jk: 块的左上角 坐标。
%bn_r: block_num_row,分块之后,沿着行的方向上有多少个块。
%用 tran_block 来算距离,得到的sim_blk 却是来自block.
%np: 搜索窗口的大小/块移动步距。
% tau: 最大相似距离
% max_sim_num: 最多相似块 个数
function [sim_blk,sim_num,sim_blk_idx]=search_similar_block(ik,jk,block,tran_block,k,np,bn_r,bn_c,tau,max_sim_num)
    % 搜索窗口的 左上角 和 右下角 的块的坐标。s,e:start,end.
    in_s=max(ik-floor(np/2),1);
    jn_s=max(jk-floor(np/2),1);
    in_e=min(ik+floor(np/2),bn_r);
    jn_e=min(jk+floor(np/2),bn_c);
    % 当前参考块
    ref_blk=tran_block(:,:,((ik-1)*bn_c+jk));
    k2=k*k;
    cnt=0;
     
    %dist=[];
    %blk_idx=[];
    %如果参考块在图像的边缘,那它周围的搜索区域就不会是完整的n*n
    %所以不能单纯的由cnt 反推出idx.
    %for ii=in_s:1:in_e
    %   for jj=jn_s:1:jn_e
    %       cnt=cnt+1;
    %       %idx=ii*bn_c+jj;
    %       idx=(ii-1)*bn_c+(jj-1)+1;
    %       cur_blk=tran_block(:,:,idx);
    %       blk_idx(cnt)=idx;
    %       dist(cnt)=norm(cur_blk-ref_blk);% 只是比较大小,就没必要归一化了 /k2;
    %   end
    %end
    %下面找相似块的方法要比上面的快一些
 
    ii=in_s:1:in_e;
    jj=jn_s:1:jn_e;
    [II,JJ]=meshgrid(ii,jj);
    IDX=(II-1)*bn_c+JJ;
    blk_idx=IDX(:);
    cur_blk=tran_block(:,:,blk_idx);
    cnt=size(cur_blk,3);
    ref_blk_mat=repmat(ref_blk,[1,1,cnt]);
    % shit! 要不要用norm ? 奇异值能衡量矩阵的相似程度?
    % norm(cur_blk-ref_blk_mat);
    delta_blk=cur_blk-ref_blk_mat;
    dist=sum(sum(delta_blk.*delta_blk,1),2);
 
    % 排序,找到最相似的块
    [dist_sort,dist_idx]=sort(dist);
    max_num=min(cnt,max_sim_num);%可能当前块中个数还没有max_sim_num多
    if(dist_sort(max_num)

 % 阈值收缩,abs小于thres的 赋值 0
function [val]=thres_shrink(data,thres)
    val=data;
    idx=find(abs(data)


% 3D变换,先进行 2D变换,用lambda2d阈值收缩,然后进行1D变换,
% lambda1d 阈值收缩。
function blk_tran3d=transform_3d(blk_3d,tran_mode,lambda2d,lambda1d)
    global blk_tran1d_s;
    global blk_2d_s;
    [m,n,blk_num]=size(blk_3d);
 
    %变换不同时,可能需要修改??
    blk_2d_shrink=zeros(m,n,blk_num);
    blk_1d_shrink=zeros(m,n,blk_num);
 
    %(strcmp(tran_mode,'fft'))
    if(tran_mode==0)    %fft
        for i=1:1:blk_num
            blk_tran2d=fft2(blk_3d(:,:,i));
            blk_2d_shrink(:,:,i)=thres_shrink(blk_tran2d,lambda2d);
        end
        for i=1:1:m
            for j=1:1:n
                blk_tran1d=fft(blk_2d_shrink(i,j,:));
                blk_1d_shrink(i,j,:)=thres_shrink(blk_tran1d,lambda1d);
            end
        end
        blk_tran3d=blk_1d_shrink;
        %test 这是为了测试 还能否反变换回来。
        %blk_invtran1d=zeros(m,n,blk_num);
        %blk_est=zeros(m,n,blk_num);
        %for i=1:1:m
        %   for j=1:1:n
        %       blk_invtran1d(i,j,:)=ifft(blk_tran3d(i,j,:));
        %   end
        %end
        %for i=1:1:blk_num
        %   blk_est(:,:,i)=ifft2(blk_invtran1d(:,:,i));
        %end
         
    elseif(tran_mode==1)  %dct
        for i=1:1:blk_num
            blk_tran2d=dct2(blk_3d(:,:,i));
            blk_2d_shrink(:,:,i)=thres_shrink(blk_tran2d,lambda2d);
        end
        for i=1:1:m
            for j=1:1:n
                blk_tran1d=dct(blk_2d_shrink(i,j,:));
                blk_1d_shrink(i,j,:)=thres_shrink(blk_tran1d,lambda1d);
            end
        end
        blk_tran3d=blk_1d_shrink;
 
    elseif(tran_mode==2)    %dwt
        blk_2d_s={};
        blk_2d_shrink=[];%zeros()
        for i=1:1:blk_num
            [blk_tran2d_c,blk_tran2d_s]=wavedec2(blk_3d(:,:,i),2,'Bior1.5');
            blk_2d_shrink(:,i)=thres_shrink(blk_tran2d_c,lambda2d);
            blk_2d_s{i}=blk_tran2d_s;
        end
        %这里应该用 wavedec.因为是对1维??
        [blk_tran1d_c,blk_tran1d_s]=wavedec2(blk_2d_shrink,1,'haar');
        blk_tran3d=thres_shrink(blk_tran1d_c,lambda1d);
%   elseif(strcmp(tran_mode,'db1')) %还未实现
%       blk_2d_s={};
%       blk_2d_shrink=[];%zeros()
%       for i=1:1:blk_num
%           [blk_tran2d_cA,blk_tran2d_cH,blk_tran2d_cV,blk_tran2d_cD]=...
%               dwt2(blk_3d(:,:,i),'db1');
%           blk_2d_shrink(:,i)=thres_shrink(blk_tran2d_c,lambda2d);
%           blk_2d_s{i}=blk_tran2d_s;
%       end
%       [blk_tran1d_c,blk_tran1d_s]=wavedec2(blk_2d_shrink,1,'haar');
%       blk_tran3d=thres_shrink(blk_tran1d_c,lambda1d);
    else
        error('tran_mode error');
    end

3. 模型效果

3.1 不包含BM3D在Y通道去噪图像增强结果

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第2张图片

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第3张图片图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第4张图片

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第5张图片

3.2 包含BM3D在Y通道去噪图像增强结果

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第6张图片

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第7张图片

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第8张图片

图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)_第9张图片


你可能感兴趣的:(算法实现,matlab,机器视觉)