人们想通过双重检查锁定来降低同步的开销。下面是使用双重检查锁定来实现延迟初始化的示例代码:
public class DoubleCheckedLocking { //1 private static Instance instance; //2 public static Instance getInstance() { //3 if (instance == null) { //4:第一次检查 synchronized (DoubleCheckedLocking.class) { //5:加锁 if (instance == null) //6:第二次检查 instance = new Instance(); //7:问题的根源出在这里 } //8 } //9 return instance; //10 } //11 } //12
如上面代码所示,如果第一次检查instance不为null,那么就不需要执行下面的加锁和初始化操作。因此可以大幅降低synchronized带来的性能开销。上面代码表面上看起来,似乎两全其美:
双重检查锁定看起来似乎很完美,但这是一个错误的优化!在线程执行到第4行代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化。
前面的双重检查锁定示例代码的第7行(instance = new Singleton();)创建一个对象。这一行代码可以分解为如下的三行伪代码:
memory = allocate(); //1:分配对象的内存空间 ctorInstance(memory); //2:初始化对象 instance = memory; //3:设置instance指向刚分配的内存地址
上面三行伪代码中的2和3之间,可能会被重排序(在一些JIT编译器上,这种重排序是真实发生的,详情见参考文献1的“Out-of-order writes”部分)。2和3之间重排序之后的执行时序如下:
memory = allocate(); //1:分配对象的内存空间 instance = memory; //3:设置instance指向刚分配的内存地址 //注意,此时对象还没有被初始化! ctorInstance(memory); //2:初始化对象
为了更好的理解intra-thread semantics,请看下面的示意图(假设一个线程A在构造对象后,立即访问这个对象):
如上图所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-thread semantics。
下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:
回到本文的主题,DoubleCheckedLocking示例代码的第7行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!下面是这个场景的具体执行时序:
时间 | 线程A | 线程B |
t1 | A1:分配对象的内存空间 | |
t2 | A3:设置instance指向内存空间 | |
t3 | B1:判断instance是否为空 | |
t4 | B2:由于instance不为null,线程B将访问instance引用的对象 | |
t5 | A2:初始化对象 | |
t6 | A4:访问instance引用的对象 |
在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化:这里A2和A3虽然重排序了,但java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此线程A的intra-thread semantics没有改变。但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。
后文介绍的两个解决方案,分别对应于上面这两点。
对于前面的基于双重检查锁定来实现延迟初始化的方案(指DoubleCheckedLocking示例代码),我们只需要做一点小的修改(把instance声明为volatile型),就可以实现线程安全的延迟初始化。请看下面的示例代码:
public class SafeDoubleCheckedLocking { private volatile static Instance instance; public static Instance getInstance() { if (instance == null) { synchronized (SafeDoubleCheckedLocking.class) { if (instance == null) instance = new Instance();//instance为volatile,现在没问题了 } } return instance; } }
当声明对象的引用为volatile后,“问题的根源”的三行伪代码中的2和3之间的重排序,在多线程环境中将会被禁止。上面示例代码将按如下的时序执行:
这个方案本质上是通过禁止上图中的2和3之间的重排序,来保证线程安全的延迟初始化。
JVM在类的初始化阶段(即在Class被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。
基于这个特性,可以实现另一种线程安全的延迟初始化方案(这个方案被称之为Initialization On Demand Holder idiom):
public class InstanceFactory { private static class InstanceHolder { public static Instance instance = new Instance(); } public static Instance getInstance() { return InstanceHolder.instance ; //这里将导致InstanceHolder类被初始化 } }
假设两个线程并发执行getInstance(),下面是执行的示意图:
这个方案的实质是:允许“问题的根源”的三行伪代码中的2和3重排序,但不允许非构造线程(这里指线程B)“看到”这个重排序。
初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据java语言规范,在首次发生下列任意一种情况时,一个类或接口类型T将被立即初始化:
在InstanceFactory示例代码中,首次执行getInstance()的线程将导致InstanceHolder类被初始化(符合情况4)。
由于java语言是多线程的,多个线程可能在同一时间尝试去初始化同一个类或接口(比如这里多个线程可能在同一时刻调用getInstance()来初始化InstanceHolder类)。因此在java中初始化一个类或者接口时,需要做细致的同步处理。
Java语言规范规定,对于每一个类或接口C,都有一个唯一的初始化锁LC与之对应。从C到LC的映射,由JVM的具体实现去自由实现。JVM在类初始化期间会获取这个初始化锁,并且每个线程至少获取一次锁来确保这个类已经被初始化过了(事实上,java语言规范允许JVM的具体实现在这里做一些优化,见后文的说明)。
对于类或接口的初始化,java语言规范制定了精巧而复杂的类初始化处理过程。java初始化一个类或接口的处理过程如下(这里对类初始化处理过程的说明,省略了与本文无关的部分;同时为了更好的说明类初始化过程中的同步处理机制,笔者人为的把类初始化的处理过程分为了五个阶段):
第一阶段:通过在Class对象上同步(即获取Class对象的初始化锁),来控制类或接口的初始化。这个获取锁的线程会一直等待,直到当前线程能够获取到这个初始化锁。
假设Class对象当前还没有被初始化(初始化状态state此时被标记为state = noInitialization),且有两个线程A和B试图同时初始化这个Class对象。下面是对应的示意图:
下面是这个示意图的说明:
时间 |
线程A |
线程B |
t1 |
A1:尝试获取Class对象的初始化锁。这里假设线程A获取到了初始化锁 |
B1:尝试获取Class对象的初始化锁,由于线程A获取到了锁,线程B将一直等待获取初始化锁 |
t2 |
A2:线程A看到线程还未被初始化(因为读取到state == noInitialization),线程设置state = initializing |
|
t3 |
A3:线程A释放初始化锁 |
第二阶段:线程A执行类的初始化,同时线程B在初始化锁对应的condition上等待:
下面是这个示意图的说明:
时间 |
线程A |
线程B |
t1 |
A1:执行类的静态初始化和初始化类中声明的静态字段 |
B1:获取到初始化锁 |
t2 |
B2:读取到state == initializing |
|
t3 |
B3:释放初始化锁 |
|
t4 |
B4:在初始化锁的condition中等待 |
第三阶段:线程A设置state = initialized,然后唤醒在condition中等待的所有线程:
下面是这个示意图的说明:
时间 |
线程A |
t1 |
A1:获取初始化锁 |
t2 |
A2:设置state = initialized |
t3 |
A3:唤醒在condition中等待的所有线程 |
t4 |
A4:释放初始化锁 |
t5 |
A5:线程A的初始化处理过程完成 |
第四阶段:线程B结束类的初始化处理:
下面是这个示意图的说明:
时间 |
线程B |
t1 |
B1:获取初始化锁 |
t2 |
B2:读取到state == initialized |
t3 |
B3:释放初始化锁 |
t4 |
B4:线程B的类初始化处理过程完成 |
线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放初始化锁;线程B在第四阶段的B1获取同一个初始化锁,并在第四阶段的B4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:
这个happens-before关系将保证:线程A执行类的初始化时的写入操作(执行类的静态初始化和初始化类中声明的静态字段),线程B一定能看到。
第五阶段:线程C执行类的初始化的处理:
下面是这个示意图的说明:
时间 |
线程B |
t1 |
C1:获取初始化锁 |
t2 |
C2:读取到state == initialized |
t3 |
C3:释放初始化锁 |
t4 |
C4:线程C的类初始化处理过程完成 |
在第三阶段之后,类已经完成了初始化。因此线程C在第五阶段的类初始化处理过程相对简单一些(前面的线程A和B的类初始化处理过程都经历了两次锁获取-锁释放,而线程C的类初始化处理只需要经历一次锁获取-锁释放)。
线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放锁;线程C在第五阶段的C1获取同一个锁,并在在第五阶段的C4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:
这个happens-before关系将保证:线程A执行类的初始化时的写入操作,线程C一定能看到。
※注1:这里的condition和state标记是本文虚构出来的。Java语言规范并没有硬性规定一定要使用condition和state标记。JVM的具体实现只要实现类似功能即可。
※注2:Java语言规范允许Java的具体实现,优化类的初始化处理过程(对这里的第五阶段做优化),具体细节参见java语言规范的12.4.2章。
通过对比基于volatile的双重检查锁定的方案和基于类初始化的方案,我们会发现基于类初始化的方案的实现代码更简洁。但基于volatile的双重检查锁定的方案有一个额外的优势:除了可以对静态字段实现延迟初始化外,还可以对实例字段实现延迟初始化。
上文中提到了对于单例模式的“Initialization On Demand Holder idiom”实现方案。
这个方案的技术实质是利用Java类初始化的LC锁。相比其他实现方案(如double-checked locking等),该技术方案的实现代码较为简洁,并且在所有版本的编译器中都是可行的。该方案代码如下:
1 |
public class InstanceFactory { |
2 |
private static class InstanceHolder { |
3 |
public static Instance instance = new Instance(); |
4 |
} |
5 |
6 |
public static Instance getInstance() { |
7 |
return InstanceHolder.instance ; //这里将导致InstanceHolder类被初始化 |
8 |
} |
9 |
} |
根据wikipedia中的解释,“双重检查锁定与延迟初始化”这篇文章中的实现,实际上是Steve Quirk早期的实现,Bill Pugh在其基础上将LazyHolder.INSTANCE的修饰符修改为private static final,实现代码如下:
01 |
public class Something { |
02 |
private Something() {} |
03 |
04 |
private static class LazyHolder { |
05 |
private static final Something INSTANCE = new Something(); |
06 |
} |
07 |
08 |
public static Something getInstance() { |
09 |
return LazyHolder.INSTANCE; |
10 |
} |
11 |
} |
然而,在另外一篇wikipedia的说明中,LazyHolder.INSTANCE的修饰符则为public static final:
01 |
public class Singleton { |
02 |
// Private constructor prevents instantiation from other classes |
03 |
private Singleton() { } |
04 |
05 |
/** |
06 |
* SingletonHolder is loaded on the first execution of Singleton.getInstance() |
07 |
* or the first access to SingletonHolder.INSTANCE, not before. |
08 |
*/ |
09 |
private static class SingletonHolder { |
10 |
public static final Singleton INSTANCE = new Singleton(); |
11 |
} |
12 |
13 |
public static Singleton getInstance() { |
14 |
return SingletonHolder.INSTANCE; |
15 |
} |
16 |
} |
在讨论这个问题前,首先我们需要明确的是,上述三种方案都是可以保证线程安全的。
在JLS12.4中关于一个类或接口将被立即初始化的相关说明:
- T is a class and an instance of T is created.
- T is a class and a static method declared by T is invoked.
- A static field declared by T is assigned.
- A static field declared by T is used and the field is not a constant variable (§4.12.4).
- T is a top level class (§7.6), and an assert statement (§14.10) lexically nested within T (§8.1.3) is executed.
显然,上述任意一种实现首次执行Singleton.getInstance()时,由于使用InstanceHolder.instance变量,将会
导致InstanceHolder初始化,符合第四条。注意final关键字修饰的变量,并不一定是constant variable。引用JLS4.12.4中的相关说明:
A variable of primitive type or type
String
, that isfinal
and initialized with a compile-time constant expression (§15.28), is called a constant variable.
只有基本类型或者是String类型的变量,才可能成为constant variable。
回到刚才的问题,在stackoverflow上有相关问题的回答。
1 |
public class Singleton { |
2 |
... |
3 |
private static class LazyHolder { |
4 |
static final Singleton INSTANCE = new Singleton(); |
5 |
} |
6 |
public static Singleton getInstance() { |
7 |
return LazyHolder.INSTANCE; |
8 |
} |
9 |
} |
即并不在INSTANCE变量前添加public或者private修饰,即使用默认的package private访问权限。
不用public的原因是这个修饰不够合理,作者认为事实上在LazyHolder是被限定为private的情况下,使用public来修饰INSTANCE并没有问题,然而如果有人修改LazyHolder为public,那么就可能出现问题。
不用private的原因是,Java编译器中会保证类内部的private字段无法被外部访问,然而JLS6.6.1中有相应的规定:
Otherwise, if the member or constructor is declared private, then access is permitted if and only if it occurs within the body of the top level class (§7.6) that encloses the declaration of the member or constructor.
所以外部类拥有对内部类中private字段的访问权限,那么在这个情况下,编译器就会有一些小技巧来保证外部类对内部类private字段的访问权限,即在内部类中插入packge private method,使得外部类调用这些getter和setter方法的形式来访问内部类的private字段。
综上所述,从线程安全的角度而言,上述的几种“Initialization On Demand Holder idiom”实现都是没有问题的。如果讨论细节上的合理性,那么更推荐最后一种实现,即:
1 |
public class Singleton { |
2 |
... |
3 |
private static class LazyHolder { |
4 |
static final Singleton INSTANCE = new Singleton(); |
5 |
} |
6 |
public static Singleton getInstance() { |
7 |
return LazyHolder.INSTANCE; |
8 |
} |
9 |
} |