def pdd_1():
# 根据取模运算,将奇数和偶数分开,分别排序,之后拼接输出
# nums, N = input().split(';')
aa = '555503,772867,756893,339138,399447,40662,859037,628085,855723,974471,599631,636153,581541,174761,948135,411485,554033,858627,402833,546467,574367,360461,566480,755523,222921,164287,420256,40043,977167,543295,944841,917125,331763,188173,353275,175757,950417,284578,617621,546561,913416,258741,260569,630583,252845;10'
nums, N = aa.split(';')
nums = map(int, nums.split(','))
N = int(N)
nums_0, nums_1 = [], []
for i in nums:
if i % 2 == 0:
nums_0.append(i)
nums_0.sort(reverse=True)
else:
nums_1.append(i)
nums_1.sort(reverse=True)
nums = nums_0 + nums_1
for i in range(N - 1):
print(nums[i], end=',')
print(nums[N], end='')
def pdd_2():
# DFS 求解,着重找到递归结束的条件
# DFS 注意顺序,以满足输出的字典序要求,避免二次排序
def check(nums0, new_0, nums1, new_res):
if not nums0:
if len(new_0) == len(nums1):
for i in range(len(new_0)):
if new_0[i] != nums1[i]:
return
res.append(new_res)
return
num = nums0[0]
nums0 = nums0[1:]
check(nums0, new_0, nums1, new_res + ['d'])
check(nums0, [num] + new_0, nums1, new_res + ['l'])
check(nums0, new_0 + [num], nums1, new_res + ['r'])
# N = int(input())
N = 1
for i in range(N):
# nums_0 = list(map(int, input().split()))
# nums_1 = list(map(int, input().split()))
nums_0 = [1, 2, 3]
nums_1 = [3]
print('{')
if set(nums_0) > set(nums_1):
res = []
check(nums_0, [], nums_1, [])
for j in res:
print(' '.join(j))
print('} ')
def pdd_3():
# 寻找可能出现的最大结果,确定总共出现的结果数。
# 确认每个可能出现结果的概率(需要减去前一个可能结果的概率)
# N = int(input())
# nums = list(map(int, input().split()))
N = 5
nums = [2, 2, 2, 9, 20]
res = []
front = 0
for i in range(1, max(nums) + 1):
tmp = 1.0
for j in nums:
tmp = tmp * (i / j if i < j else 1.0)
res.append(tmp - front)
front = tmp
ans = 0.0
for i in range(len(res)):
ans += (i + 1) * res[i]
print("%.2f" % ans)
``
def pdd_4():
# 寻找乘法表中第k大的数。
# 暴力破解法 需要空间复杂度O(m*n) 时间复杂度O(m*n*(log(m*n)+1))
# 二分法 空间复杂度O(1) 时间复杂度O(min(m,n)*log(m*n))
# n, m, k = list(map(int, input().split()))
n, m, k = 10, 10, 4
l, r = 1, m * n
if m > n:
n, m = m, n
k = m * n - k + 1
while l < r:
mid = l + (r - l) // 2
count = 0
for i in range(1, m + 1):
count += min(mid // i, n)
if count < k:
l = mid + 1
else:
r = mid
print(l)