- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- C++ OpenCV4 实现鱼眼镜头矫正
朝风工作室
c++开发语言
一、为什么需要鱼眼镜头矫正?鱼眼镜头通过特殊的光学设计实现180°甚至更广的视野,广泛应用于全景相机、自动驾驶、安防监控等领域。但这种广角特性会引入严重的桶形畸变:直线边缘会向内弯曲(如图像边缘的门框变成弧线),物体尺寸在边缘区域会被拉伸。矫正的核心目标:将鱼眼镜头拍摄的畸变图像还原为接近人眼视觉的正常图像,便于后续的目标检测、图像拼接等处理。矫正前后效果对比(此处可插入图片)矫正前图像(鱼眼畸变
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化
计算机C9硕士_算法工程师
深度学习目标检测YOLO
深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化文章目录1.环境设置2.数据准备3.模型训练4.推理与结果可视化推理代码示例5.构建可视化界面PyQt5GUI代码示例总结以下文字及代码仅供参考。树冠检测数据集的训练及推理1使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化等方面进行详细介绍。1.环境设置首先确保
- 学习昇腾开发的第8天
派晟电子工作室
学习昇腾
1、目标检测样例:MindXSDK应用开发入门-Atlas200IDKA2开发者套件23.0.RC3-昇腾社区配置环境变量。:./usr/local/Ascend/mxVision/set_env.sh2、修改IP地址:以root用户名登录开发者套件。打开配置文件。Ubuntu操作系统:执行cd/etc/netplan命令进入“netplan”目录,执行ll命令查看目录下是否有类似“xxxx-ne
- DFT ATPG中core chain 和wrap chain区别
芯作者
DFT技术分享智能硬件硬件工程
在DFT(可测试性设计)中,CoreChain(核心扫描链)和WrapChain(封装扫描链)是两种不同的扫描链结构,分别服务于内部逻辑测试(Intest)和互连测试(Extest)。它们的核心区别如下:一、本质区别特性CoreChain(核心扫描链)WrapChain(封装扫描链)作用对象芯片内部逻辑单元(如寄存器、组合逻辑)芯片I/O端口(输入/输出引脚)测试目标检测内部故障(Stuck-At
- Python 人工智能Ai视觉模型 YOLOv8
GHY云端大师
pythonAI大模型视觉训练人工智能YOLO
YOLOv8简介:Python中的高效AI视觉模型YOLOv8是Ultralytics公司开发的最新目标检测模型,属于YOLO(YouOnlyLookOnce)系列的最新版本,以其高效和准确著称。核心特点高性能:在速度和精度之间取得了更好的平衡多功能:支持目标检测、实例分割和图像分类用户友好:简化了API设计,更易于使用可扩展性:支持从移动端到云端的多种部署场景主要改进更高的检测精度更快的推理速度
- AI人工智能目标检测在体育赛事中的应用
AI大模型应用之禅
人工智能目标检测计算机视觉ai
AI人工智能目标检测在体育赛事中的应用关键词:目标检测、计算机视觉、深度学习、体育分析、YOLO、运动员追踪、比赛统计摘要:本文深入探讨了AI目标检测技术在体育赛事中的创新应用。我们将从计算机视觉基础出发,详细分析目标检测的核心算法原理,特别是YOLO系列模型在运动员和球类追踪中的实现方式。文章包含完整的数学模型解释、Python实战项目演示,以及在实际体育场景中的应用案例分析。最后,我们展望了这
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 深度解析YOLOv8:CSPHet卷积结构如何实现极致轻量化
向哆哆
YOLO创新涨点系列YOLOyolov8架构目标检测机器学习
文章目录一、背景介绍1.1YOLOv8的现状1.2降参数的必要性二、相关技术介绍2.1Dual思想2.2HetConv三、CSPHet结构设计3.1CSP模块的改进3.2结合HetConv3.3参数量的下降四、CSPHet的代码实现五、实验结果六、总结与展望在目标检测领域,YOLO系列算法一直以其卓越的速度和准确率受到广泛关注。随着深度学习技术的不断发展,研究人员不断探索如何进一步优化YOLO算法
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- 目标检测——YOLOX算法解读
论文:YOLOX:ExceedingYOLOSeriesin2021(2021.7.18)作者:ZhengGe,SongtaoLiu,FengWang,ZemingLi,JianSun链接:https://arxiv.org/abs/2107.08430代码:https://github.com/Megvii-BaseDetection/YOLOXYOLO系列算法解读:YOLOv1通俗易懂版解读、
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- (二十一)YOLO 全解析:从实时目标检测到多任务视觉智能
只有左边一个小酒窝
深度学习YOLO目标检测人工智能深度学习计算机视觉
1YOLO的发展脉络与技术定位1.1发展脉络YOLOv1(2015年):将目标检测重新定义为单一回归问题,把输入图像划分为S×S网格,每个网格单元负责预测固定数量的边界框及对应的类别概率,直接从像素回归预测物体的边界框坐标和类别概率。但存在小目标检测能力弱、定位精度不足等局限。YOLOv2(2016年):引入批量归一化、锚框、维度集群等技术,还提出了高分辨率分类器、直接位置预测、细粒度特征融合、多
- 使用预训练权重在YOLO模型上训练新数据集的完整指南
马里马里奥-
YOLO目标跟踪人工智能
使用预训练权重在YOLO模型上训练新数据集的完整指南引言在目标检测领域,迁移学习已成为提升模型性能的关键技术。本文将详细介绍如何利用预训练权重在YOLO(YouOnlyLookOnce)框架上训练自定义数据集,帮助您节省训练时间并提高检测精度。为什么使用预训练权重?加速收敛:预训练模型已学习通用特征,训练时间可缩短30%−70%30\%-70\%30%−70%小样本适配:在数据量有限时(n<100
- Python与C++检测框过滤差异分析
马里马里奥-
pythonc++开发语言人工智能
Python与C++检测框过滤差异分析在目标检测任务中,检测框过滤是后处理的关键环节。本文将从实现方式、性能表现和适用场景三个维度,对比分析Python与C++在检测框过滤中的差异。检测框过滤基本原理检测框过滤的核心是非极大值抑制(NMS)算法,其数学表达式为:NMS(B,S,θ)={bi∣∀bj,area(bi∩bj)area(bi∪bj)0:i=order[0]keep.append(i)xx
- YOLO理论知识简单了解
老农民编程
视觉与YoLo模型认知YOLO
目录前言一、YOLO是什么?以及核心思想?1、目标检测的本质与分类2、YOLO核心思想二、为什么使用YOLO,优势是什么?三、怎么使用YOLO模型?总结前言对YOLO模型的简单理解,对其进行记录。一、YOLO是什么?以及核心思想?YOLO(YouOnlyLookOnce)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。1、目标检测的本质与分类1.目标检测本质:目标在哪里:检
- 甜菜杂草目标检测数据集(猫脸码客第278期)
公众号:猫脸码客
开源数据集猫脸码客开源数据集甜菜杂草目标检测数据集
甜菜杂草检测一、甜菜田杂草种类甜菜田中常见多种杂草,以下为你详细介绍几种典型杂草:稗草植物属性:一年生草本植物,外形与稻子极为相似。形态特征:秆直立,表面光滑无毛。圆锥花序主轴带有角棱,质地粗糙;小穗密集生长在穗轴的一侧,几乎无柄或仅有极短柄。生长习性:花果期在7-10月,常生长于稻田、沼泽、沟渠旁以及低洼荒地等区域。狗尾草别称:又叫莠,因其穗形酷似狗尾巴而得名。形态特征:秆疏丛生,直立或者基部膝
- YOLOv12:以注意力为中心的物体检测
发呆小天才O.o
计算机视觉深度学习计算机视觉目标检测YOLOv12
1.概述实时目标检测已成为许多实际应用的关键,而Ultralytics的YOLO(YouOnlyLookOnce)系列一直是最先进的模型系列,在速度和准确率之间实现了稳健的平衡。注意力机制的低效性阻碍了其在YOLO等高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。由于注意力机制效率低下,且计算复杂度高达平方级,内存访问操作效率低下,因此大多数目标检测架构传统
- 计算机视觉入门:OpenCV 人脸识别与手势控制系统全解析
高山仰星
计算机视觉opencv人工智能
1.引言计算机视觉(ComputerVision)是人工智能的重要领域,而OpenCV(OpenSourceComputerVisionLibrary)是最常用的开源计算机视觉库。它广泛用于图像处理、人脸识别、目标检测、手势识别等多个应用场景。本教程将详细介绍OpenCV的核心概念,并通过人脸识别的门禁系统和手势识别的智能控制系统这两个案例,帮助你掌握OpenCV的实际应用。2.OpenCV介绍与
- 基于YOLOv11的实时人脸表情识别系统(附完整资源 + PyQt5界面 + 训练代码)
霜天红叶
YOLOpythonpycharm人工智能算法cnn
引言在人机交互和情感计算领域,人脸表情识别一直是一个备受关注的研究方向。随着深度学习技术的快速发展,特别是目标检测和图像分类算法的进步,实时、高精度的人脸表情识别系统已经成为可能。本文将详细介绍一个基于YOLOv11的人脸表情识别系统,该系统不仅能够实现实时人脸检测,还能准确识别多种表情状态,具有广泛的应用前景。GitHub地址项目地址:https://github.com/AND-Q/Facia
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 声波下的眼睛:用Python打造水下目标检测模型实战指南
Echo_Wish
Python算法Python笔记从零开始学Python人工智能python目标检测开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- 基于腾讯云GPU服务器的深度学习训练技术指南
小猴崽
解决方案GPU深度学习深度学习gpu算力解决方案
摘要本文针对深度学习训练场景,系统解析技术核心价值与实施路径,结合腾讯云GPU服务器产品特性,提供从环境搭建到性能优化的完整解决方案。通过对比实验验证,采用腾讯云方案可使训练效率提升180%,成本降低40%(数据来源:IDC2024中国AI基础设施白皮书)。一、技术解析核心价值深度学习训练通过多层神经网络自动提取数据特征,广泛应用于计算机视觉(如YOLOv5目标检测)、自然语言处理(Transfo
- 基于YOLOv11的手势控制轮椅系统:从数据集构建到实时部署
YOLO实战营
YOLOpython计算机视觉人工智能目标跟踪目标检测ui
1.引言手势控制技术为人机交互提供了自然直观的交互方式,在辅助医疗领域具有重要应用价值。本文详细介绍如何利用YOLOv11目标检测算法构建一套完整的手势控制轮椅系统,包含数据集构建、模型训练、系统集成和用户界面开发的全流程实现。该系统能够识别用户特定手势指令,转化为轮椅控制信号,为行动不便人士提供更便捷的移动解决方案。2.手势数据集构建2.1公开数据集资源HaGRID(HandGestureRec
- YOLO 在无人机视频流中的部署实践:从低延迟推理到边缘智能协同
YOLO在无人机视频流中的部署实践:从低延迟推理到边缘智能协同关键词:YOLOv8、无人机视频流、边缘部署、RTSP、低延迟推理、实时检测、JetsonOrin、RK3588、模型压缩摘要:随着无人机在巡检、安防、农业、物流等场景的广泛应用,如何将高效的目标检测模型部署在无人机或其边缘计算模块上,成为一项关键挑战。YOLO系列模型以其高性能、低延迟特性,已被广泛应用于实时视频流的智能感知任务。本文
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p