众所周知ThreadLocal提供了线程局部变量,独立于变量的初始化副本。ThreadLocal设计初衷是用来存放与当前线程绑定的对象,其它线程不应该去访问也不能访问。文末会用例子来举例说明不当使用会破坏这种设计。
ThreadLocal 通过set方法设置的变量并非是放在ThreadLocal对象中,而是通过一个ThreadLocal.ThreadLocalMap类型的对象与当前线程绑定。下面通过源码一探究竟。
Thread类中有个ThreadLocalMap类型的局部变量,而且在线程退出后会清除threadLocals线程变量,也就是ThreadLocalMap对象的生命周期和当前线程一样,这就是不建议在线程池中使用ThreadLocal的原因。
public class Thread implements Runnable {
// 此变量用来存放之前提到的线程局部变量
ThreadLocal.ThreadLocalMap threadLocals = null;
...
private void exit() {
...
threadLocals = null;
...
}
}
再来看ThreadLocal,set方法是将值value设置到与当前线程绑定的ThreadLocalMap 对象中。
public void set(T value) {
Thread t = Thread.currentThread();
// 以当前线程为键,获取当前线程的ThreadLocalMap对象,此对象就是存放通过初始化的变量或者set方法设置的变量
ThreadLocalMap map = getMap(t);
// 当前线程的ThreadLocalMap对象存在时,直接将当前ThreadLocal对象作为键,需要set的对象作为值设置到map中
if (map != null)
map.set(this, value);
else
// 当前线程ThreadLocalMap对象不存在时,为其创建变量
createMap(t, value);
}
// 获取线程t的threadLocals变量
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
//当线程t中threadLocals对象还未被赋值时,需要为其初始化
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
再来看看ThreadLocal 静态内部类ThreadLocalMap,此map数据结构是一个Entry数组,ThreadLocalMap类中的Entry继承了弱引用,而弱引用会在下次垃圾回收时被回收。
也就是说,当threadLocal对象为强引用时,下次垃圾回收会将ThreadLocalMap中entry的key对象当作垃圾回收,而我们一般在使用中都会将ThreadLocal 作为静态变量使用,此时ThreadLocal对象为强引用,其生命周期和就会和其被引用的类生命周期一样长。
static class ThreadLocalMap {
// ThreadLocalMap中存放的就是Entry类型的数组,而Entry是以当前ThreadLocal对象为key的键值对
// Entry中的key为弱引用类型
static class Entry extends WeakReference> {
// value与当前ThreadLocal对象关联
Object value;
Entry(ThreadLocal> k, Object v) {
super(k);
value = v;
}
}
private static final int INITIAL_CAPACITY = 16;
private Entry[] table;
/**
* The number of entries in the table.
*/
private int size = 0;
/**
* 扩容阈值
*/
private int threshold; // Default to 0
/**
* Set the resize threshold to maintain at worst a 2/3 load factor.
*/
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
/**
* Increment i modulo len.
*/
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
/**
* Decrement i modulo len.
*/
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create
* one when we have at least one entry to put in it.
*/
ThreadLocalMap(ThreadLocal> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
// rehash得到firstKey在table的位置
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
private Entry getEntry(ThreadLocal> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
// 在i位置上没有找到对象
return getEntryAfterMiss(key, i, e);
}
//向i往后遍历entry数组,找到后直接返回;如果没找到还会清除tab中弱引用key被垃圾回收的entry元素(即将该entry设置为null)
private Entry getEntryAfterMiss(ThreadLocal> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal> k = e.get();
if (k == key)
return e;
// e不为空,而key为空,意味key被垃圾回收
if (k == null)
// 清除已失效的entry
expungeStaleEntry(i);
else
// 移动到下个位置,每次递增1
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
// 清楚失效entry
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// 此处将value设置为null,便于gc
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
// 扫描tab数组中staleSlot右边的元素,清除被垃圾回收的entry
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal> k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
private void set(ThreadLocal> key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal> k = e.get();
//找到key时,覆盖value
if (k == key) {
e.value = value;
return;
}
// 此时表示改entry的key已被垃圾回收
if (k == null) {
//用当前值替换掉已失效的entry
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
private void replaceStaleEntry(ThreadLocal> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// 反向查找key值失效的最小i
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
//清除无效的entry,后面的操作都是尽量清除掉失效的entry
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
get方法通过获取当前线程的ThreadLocal.ThreadLocalMap类型的变量,然后通过当前ThreadLocal对象作为key在map中做查找。第一次rehash查询未命中的时候,会触发对数组向右遍历查询直到查询命中或没找到为止,中途会清楚entry数组中的无效元素并且会rehash重新指定key不为null的entry在数组中的位置。
public T get() {
//通过当前线程获取到ThreadLocalMap对象
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
//以当前ThreadLocal对象作为键,在ThreadLocalMap中查找对应的value
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
// 通过当前threadLocal对象获取对应的entry
private Entry getEntry(ThreadLocal> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
remove方法是通过当前线程中threadLocals对象,找到以当前threadLocal对象为key的entry,然后将其从threadLocals中删除。同时每次使用完threadLocal get到的变量,记得remove操作。
public void remove() {
//获取当前线程的threadLocals对象
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
// 删除threadLocals对象中以当前threadLocal对象为key的entry
private void remove(ThreadLocal> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
//向后遍历数组
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
开启1条线程,分别对2个threadlocal变量进行读写,然后观察是否影响了主线程读取threadlocal变量
private static ThreadLocal stringThreadLocal = ThreadLocal.withInitial(() -> "initialValue");
private static ThreadLocal integerThreadLocal = ThreadLocal.withInitial(() -> 0);
public static void main(String[] args) throws InterruptedException {
Thread thread1 = new Thread(() -> {
stringThreadLocal.set("thread-1");
integerThreadLocal.set(129);
System.out.println(String.format("%s-----stringThreadLocalValue=%s",
Thread.currentThread().getName(), stringThreadLocal.get()));
System.out.println(String.format("%s-----integerThreadLocalValue=%s",
Thread.currentThread().getName(), integerThreadLocal.get()));
}, "thread-1");
thread1.start();
thread1.join();
System.out.println(String.format("%s-----stringThreadLocalValue=%s",
Thread.currentThread().getName(), stringThreadLocal.get()));
System.out.println(String.format("%s-----integerThreadLocalValue=%s",
Thread.currentThread().getName(), integerThreadLocal.get()));
}
输出结果可见各线程之间对象不会互相影响。
thread-1-----stringThreadLocalValue=thread-1
thread-1-----integerThreadLocalValue=129
main-----stringThreadLocalValue=initialValue
main-----integerThreadLocalValue=0
如果ThreadLocal中引用的变量是静态变量会怎么样?动态变量呢?
private static ThreadLocal
理解了源码,这个运行结果就不会感到意外了。动态变量也和这个类似,threadlocal中设置的可变对象如果被其它线程修改,当前线程get到的数据就不是原来的值了。
main---------initKey->initValue
Thread-0-----initKey->null
main---------initKey->newValue
thread-1-----initKey->newerValue
main---------initKey->newValue