lookahead

2019最牛的梯度优化算法出炉,AdaBound实验对比代码

RAdam:

https://github.com/LiyuanLucasLiu/RAdam

 

lookahead

73上用的这个:

https://github.com/alphadl/lookahead.pytorch

 

https://github.com/dseuss/pytorch-lookahead-optimizer/blob/master/optim.py

这个有用法:

base_opt = torch.optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999)) # Any optimizer
lookahead = Lookahead(base_opt, k=5, alpha=0.5) # Initialize Lookahead
lookahead.zero_grad()
loss_function(model(input), target).backward() # Self-defined loss function
lookahead.step()

https://github.com/yoshiso/pytorch-modules/blob/d0847a60620e13d14faaec19cf4103be7e839692/lookahead_optimizer/__init__.py

 

class Lookahead(nn.Module):
    # Wang et al 2016 - Lookahead Convolution Layer for Unidirectional Recurrent Neural Networks
    # input shape - sequence, batch, feature - TxNxH
    # output shape - same as input
    def __init__(self, n_features, context):
        # should we handle batch_first=True?
        super(Lookahead, self).__init__()
        self.n_features = n_features
        self.weight = Parameter(torch.Tensor(n_features, context + 1))
        assert context > 0
        self.context = context
        self.register_parameter('bias', None)
        self.init_parameters()

    def init_parameters(self):  # what's a better way initialiase this layer?
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.uniform_(-stdv, stdv)

    def forward(self, input):
        seq_len = input.size(0)
        # pad the 0th dimension (T/sequence) with zeroes whose number = context
        # Once pytorch's padding functions have settled, should move to those.
        padding = torch.zeros(self.context, *(input.size()[1:])).type_as(input)
        x = torch.cat((input, padding), 0)

        # add lookahead windows (with context+1 width) as a fourth dimension
        # for each seq-batch-feature combination
        x = [x[i:i + self.context + 1] for i in range(seq_len)]  # TxLxNxH - sequence, context, batch, feature
        x = torch.stack(x)
        x = x.permute(0, 2, 3, 1)  # TxNxHxL - sequence, batch, feature, context

        x = torch.mul(x, self.weight).sum(dim=3)
        return x

    def __repr__(self):
        return self.__class__.__name__ + '(' \
               + 'n_features=' + str(self.n_features) \
               + ', context=' + str(self.context) + ')'

 

你可能感兴趣的:(深度学习)