- 机器学习学习笔记(十七)—— 优化算法概述
lancetop-stardrms
机器学习机器学习
一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin--简单Nelder-Mead算法fmin_powell--改进型Powell法fmin_bfgs--拟Newton法fmin_cg--非线性共
- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 机器学习,我们主要学习什么?
悠然的笔记本
机器学习机器学习
机器学习的发展历程机器学习的发展历程,大致分为以下几个阶段:1.起源与早期探索(20世纪40年代-60年代)1949年:Hebb提出了基于神经心理学的学习机制,开启了机器学习的先河1950年代:机器学习的起源与人工智能的探索紧密相连。例如,1956年,达特茅斯会议标志着人工智能的诞生,机器学习作为其重要分支也开始受到关注1960年代:出现了早期的机器学习算法,如1967年诞生的K最近邻算法(KNN
- 多目标应用:基于自组织分群的多目标粒子群优化算法(SS-MOPSO)的移动机器人路径规划研究(提供MATLAB代码)
IT猿手
机器人路径规划多目标优化算法多目标应用前端多目标算法人工智能matlab算法路径规划
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 非支配性排序遗传算法 III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)
ww18000
r语言开发语言数据挖掘机器学习
非支配性排序遗传算法III(NSGA-III)是用于求解多目标优化问题的一种进化算法1。以下是对它的具体介绍1:具体完整算法请跳转:非支配性排序遗传算法III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)发展背景NSGA-III由KalyanmoyDeb和HarshitJain提出,是在NSGA-II的基础上进行改进和扩展,以更好地处理多目标优化问题,尤其是在
- 数据结构——排序(交换排序)
c++
目录一、交换排序的总体概念二、冒泡排序三、快速排序1.挖坑法2.左右指针3.前后指针一、交换排序的总体概念交换排序是一类排序算法,它的核心思想是通过交换元素的位置来达到排序的目的。在排序过程中,比较数组中的元素对,如果它们的顺序不符合排序要求,就交换它们的位置。在这里主要讲冒泡排序和快速排序。二、冒泡排序基本概念:冒泡排序是一种简单的交换排序算法。它的基本思想是通过反复比较相邻的元素,根据排序要求
- 负载均衡算法分类以及它们的优缺点
xiaobai166
负载均衡
负载均衡算法分类任务平分类:负载均衡系统将收到的任务平均分配给服务器进行处理,这里的“平均”可以是绝对数量的平均,也可以是比例或者权重上的平均。负载均衡类:负载均衡系统根据服务器的负载来进行分配,这里的负载并不一定是通常意义上我们说的“CPU负载”,而是系统当前的压力,可以用CPU负载来衡量,也可以用连接数、I/O使用率、网卡吞吐量等来衡量系统的压力。性能最优类:负载均衡系统根据服务器的响应时间来
- 机器学习的数学基础(三)——概率与信息论
梦醒沉醉
数学基础概率论信息论
目录1.随机变量2.概率分布2.1离散型变量和概率质量函数2.2连续型变量和概率密度函数3.边缘概率4.条件概率5.条件概率的链式法则6.独立性和条件独立性7.期望、方差和协方差7.1期望7.2方差7.3协方差8.常用概率分布8.1均匀分布U(a,b)U(a,b)U(a,b)8.2Bernoulli分布8.3Multinoulli分布8.4高斯分布(正态分布)N(x;μ,σ2)N(x;\mu,\s
- 使用Python实现量子电路模拟:走进量子计算的世界
Echo_Wish
Python进阶量子计算python开发语言
量子计算作为一项前沿科技,因其能够解决经典计算无法应对的复杂问题而备受关注。通过量子电路模拟,我们可以在经典计算机上模拟量子计算过程,从而进行量子算法的研究和验证。Python作为一种强大且易用的编程语言,为量子电路模拟提供了丰富的库和工具。本文将详细介绍如何使用Python实现量子电路模拟,涵盖环境配置、依赖安装、量子电路构建、模拟与测量和实际应用案例等内容。项目概述本项目旨在使用Python构
- 《数据结构基础操作:从代码层面深入剖析链表、栈与队列》
Oracle_666
数据结构
引言在计算机编程的世界里,数据结构是构建高效算法和程序的核心要素。链表、栈和队列作为基础且重要的数据结构,广泛应用于各种软件开发场景中。本文将结合具体代码,详细解读双向链表的插入与删除、顺序栈和循环队列的基本操作、链表合并以及删除链表倒数第N个节点的实现逻辑和代码细节。1.双向链表插入与删除操作的代码实现1.1.双向链表节点结构定义//定义双向链表节点结构//双向链表的每个节点包含三部分:数据域、
- 算法基础 -- 区间和
CyberXavier
数据结构算法基础算法
区间和假定有一个无限长的数轴,数轴上每个坐标上的数都是0。现在,我们首先进行n次操作,每次操作将某一位置x上的数加c。接下来,进行m次询问,每个询问包含两个整数l和r,你需要求出在区间[l,r]之间的所有数的和。输入格式第一行包含两个整数n和m。接下来n行,每行包含两个整数x和c。再接下来m行,每行包含两个整数l和r。输出格式共m行,每行输出一个询问中所求的区间内数字和。数据范围−10^9≤x≤1
- 基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法
m0_57781768
算法量子计算
基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法在现代优化算法中,粒子群算法(PSO)因其简单易实现且高效的特点而被广泛应用。然而,传统粒子群算法在处理复杂优化问题时,常常会陷入局部最优解,无法找到全局最优解。为了解决这一问题,研究人员提出了一种基于量子旋转门的量子粒子群算法(QPSO),通过引入量子计算的思想和技术,有效地克服了传统PSO的局限性。本文将详细介绍量子粒子群算法的基
- 链表经典应用(一)
一只冯冯
手搓数据结构课程代码算法c++数据结构c语言后端
链表相关算法结构体交叉合并(带头结点)求链表的中间结点(快慢指针法)逆置单链表(带头结点)判断回文链表(带头结点):取中间结点+逆置+比对判断环形链表(快慢指针法)判断相交链表,返回相交结点结构体typedefstructLNode{intdata;structLNode*next;}LNode,*LinkList;交叉合并(带头结点)//交叉合并(带头结点)voidMerge(LinkList&
- 深入HBase——核心组件
黄雪超
大数据基础#深入HBasehbase数据库数据结构
引入通过上一篇对HBase核心算法和数据结构的梳理,我们对于其底层设计有了更多理解。现在我们从引入篇里面提到的HBase架构出发,去看看其中不同组件是如何设计与实现。核心组件首先,需要提到的就是HBase架构中会依赖到的Zookeeper和HDFS。对于HDFS看过深入HDFS的小伙伴,应该都不陌生,它提供了高可靠的海量数据存储和读写能力;而对于Zookeeper,它是一个分布式协调存储服务,主要
- C++.CSP.基础算法-前缀和
信奥帮-木心老师
信奥赛C++.基础算法c++算法开发语言
C++.J2.基础算法-前缀和学信奥来csp帮www.cspbang.com(http://www.cspbang.com)1.算法解释前缀和是基础算法之一,它一般应用于快速求出某个连续区间的和。前缀和一般包括一维前缀和,二维前缀和,前缀和算法的时间复杂度是O(1)。2.算法举例原数组:arr[8]={9,3,1,7,5,6,0,8}前缀和数组:qzh[8]={9,12,13,20,25,31,3
- 操作系统中的任务调度算法
沉默的煎蛋
算法分布式css前端tomcatjava开发语言
一、引言在操作系统中,任务调度算法是核心组件之一,它负责合理分配有限的CPU资源,以确保系统的高效运行和良好的用户体验。任务调度的目标是实现公平性、最小化等待时间、提高系统吞吐量,并最大化CPU的利用率。不同的任务调度算法适用于不同的应用场景,操作系统根据系统负载和任务的特性选择最合适的调度策略。本文将介绍几种常见的任务调度算法,分析其优缺点,并通过具体示例展示各算法的调度效果。二、常见任务调度算
- 银行家算法详解:避免死锁的经典解决方案
沉默的煎蛋
算法java数据结构哈希算法散列表
一、引言在多道程序系统中,多个进程可能需要共享有限的资源,如CPU、内存和I/O设备等。如果资源分配不当,可能会导致死锁,进而使得系统无法正常运行。为了避免死锁,操作系统需要采用一些策略来保证资源的安全分配,其中银行家算法(Banker'sAlgorithm)是一种经典的避免死锁的资源分配算法。银行家算法由计算机科学家EdsgerDijkstra提出,它通过模拟银行贷款的发放方式,确保系统始终处于
- CSP-J 算法基础 前缀和与差分
人才程序员
CSP-J算法c++竞赛青少年编程信息竞赛
文章目录前言前缀和差分具体代码实现前缀和计算前缀和保存到一个数组中实现函数计算数组一段的和差分定义差分数组运用差分到需要的数组中总体代码总结前言在计算机科学中,处理数组的区间操作是一个常见的任务。无论是计算子数组的和,还是在数组的某个范围内应用加法操作,传统方法往往效率较低。为了提高处理这些问题的效率,前缀和(PrefixSum)和差分(DifferenceArray)技术被广泛应用。它们不仅能够
- XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
机器学习理论机器学习xgboostlightgbmcatboost参数调优人工智能
梯度提升树(GradientBoostingDecisionTrees,GBDT)作为机器学习领域的核心算法,在结构化数据建模中始终占据统治地位。本文将深入解析三大主流实现框架:XGBoost、LightGBM和CatBoost,通过原理剖析、参数详解和实战对比,助你全面掌握工业级建模利器。一、算法原理深度对比1.XGBoost:工程优化的奠基者核心创新:二阶泰勒展开:利用损失函数的一阶导和二阶导
- 【深度学习】矩阵的理解与应用
大数据追光猿
深度学习矩阵算法线性代数机器学习python深度学习
一、矩阵基础知识1.什么是矩阵?矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等领域。1.1矩阵的表示一个矩阵通常用大写字母来表示,例如AAA,而矩阵中的元素则用小写字母来表示,例如aija_{ij}aij,其中iii表示行索引,jjj表示列索引。本质:矩阵是二维的张量矩阵的
- Python应用算法之贪心算法理解和实践
大数据追光猿
算法python贪心算法深度学习开发语言人工智能大数据
一、什么是贪心算法?贪心算法(GreedyAlgorithm)是一种简单而高效的算法设计思想,其核心思想是:在每一步选择中,都采取当前状态下最优的选择(即“局部最优解”),希望通过一系列局部最优解最终达到全局最优解。虽然贪心算法并不总是能得到全局最优解,但在许多问题中,它能够快速找到近似最优解。1.贪心算法的优缺点优点高效性:通常时间复杂度较低,适合解决大规模问题。简单性:实现简单,易于理解和应用
- 《Linux运维总结:基于Ubuntu 22.04+x86_64架构CPU部署etcd 3.5.15二进制分布式集群》
东城绝神
《Linux运维实战总结》linux运维ubuntuetcd
总结:整理不易,如果对你有帮助,可否点赞关注一下?更多详细内容请参考:《Linux运维篇:Linux系统运维指南》一、功能简介1、什么是etcdetcd是一个分布式、可靠的键值存储系统,用于分布式系统中存储关键核心数据。它由CoreOS开发,并且是开源的,授权协议为Apache许可证。etcd内部采用了Raft一致性算法,可以实现配置共享和服务发现。etcd中文文档可参考如下:Etcd中文文档或者
- 动态规划(Dynamic Programming)详解
程序猿000001号
动态规划算法
动态规划(DynamicProgramming)详解目录动态规划简介动态规划核心思想动态规划问题的基本要素动态规划应用步骤经典动态规划问题解析动态规划优化技巧实际应用案例动态规划的优缺点总结与学习资源1.动态规划简介动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法设计范式,通过将原问题分解为相对简单的子问题,并利用子问题之间的关系,避免重复计算,最终高效求解全局最优子
- Day24 第七章 回溯算法part03
TAK_AGI
算法
一.学习文章及资料39.组合总和40.组合总和II131.分割回文串二.学习内容1.组合总和题目特点:1.无重复元素的整数数组candidates2.同一个元素可以重复被选取因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!而在77.组合(opensnewwindow)和216.组合总和III(opensnewwindow)中都可以知道
- 数据结构与算法----枚举与模拟
王嘉俊705
算法算法C++数据结构
枚举与模拟基本概念枚举定义:通过系统性地遍历所有可能的候选解,逐一验证是否满足问题条件的算法策略特点:实现简单,但需注意时间复杂度,常通过剪枝优化效率适用场景:解空间有限、问题维度较低(一般循环嵌套不超过3层)与暴力法的关系:是暴力法的具体实现形式,但可通过合理剪枝提升效率模拟定义:按照问题描述的规则逐步实现操作过程的算法策略特点:注重代码实现的细节把控,常需处理边界条件分类:直接模拟:完全按题意
- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- C/C++贪心算法
嗜血战魔
c语言c++贪心算法
C++中的贪心算法一、基本概念贪心算法(又称贪婪算法,GreedyAlgorithm)是指,在对问题求解时,总是做出在当前看来是最好的选择,不从整体最优上加以考虑,所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题能产生整体最优解或者是整体最优解的近似解。它需要满足贪心选择性质和最优子结构性质:贪心选择性质:原问题的整体最优解可以通过一系列局
- c++课堂——贪心算法
mjyleon
c++贪心算法开发语言
一、贪心算法如果找出局部最优解并可以推出全局最优解,就是贪心。如果有四种硬币:二角五分、一角、五分、一分现在要找给某顾客六角三分钱,哪种找钱方法拿出的硬币个数最少呢?如果要找的是4角呢?二、概念所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比