RNN梯度消失和爆炸

原文:链接

也可以参考:解释的也很清晰

建议先看第一个

一,经典的RNN结构如下图所示:

 

RNN梯度消失和爆炸_第1张图片

假设我们的时间序列只有三段,  为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下:

假设在t=3时刻,损失函数为  。

则对于一次训练任务的损失函数为  ,即每一时刻损失值的累加。

使用随机梯度下降法训练RNN其实就是对  、  、  以及  求偏导,并不断调整它们以使L尽可能达到最小的过程。

二,现在假设我们我们的时间序列只有三段,t1,t2,t3。

我们只对t3时刻的  求偏导(其他时刻类似):

\frac{\partial{L_{3}}}{\partial{W_{x}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{x}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{W_{x}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{S_{1}}}\frac{\partial{S_{1}}}{\partial{W_{x}}}

\frac{\partial{L_{3}}}{\partial{W_{s}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{S_{1}}}\frac{\partial{S_{1}}}{\partial{W_{s}}}

RNN梯度消失和爆炸_第2张图片

可以看出对于  求偏导并没有长期依赖,但是对于  求偏导,会随着时间序列产生长期依赖。因为  随着时间序列向前传播,而  又是 的函数。

根据上述求偏导的过程,我们可以得出任意时刻对  求偏导的公式:

\frac{\partial{L_{t}}}{\partial{W_{x}}}=\sum_{k=0}^{t}{\frac{\partial{L_{t}}}{\partial{O_{t}}}\frac{\partial{O_{t}}}{\partial{S_{t}}}}(\prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}})\frac{\partial{S_{k}}}{\partial{W_{x}}}

 (觉得k应该从k=1开始)

任意时刻对 求偏导的公式同上。

三,如果加上激活函数,  ,

其中tanh' = [0,1]

这里的tanh^{'} = (tanh(...))^',其中

RNN梯度消失和爆炸_第3张图片

激活函数tanh和它的导数图像如下。

 

RNN梯度消失和爆炸_第4张图片

1)由上图可以看出 tanh'\in [0,1],对于训练过程大部分情况下tanh的导数是小于1的,只有当 ,此时导数等于1;

2)如果  也是一个大于0小于1的值,则当t很大时,使得tanh' * W_s < 1

  

就会趋近于0,和 (0.9*0.8)^50趋近与0是一个道理。

3)同理当  很大时,具体指(比如tanh' = 0.1,而W_s=99,则相乘为9.9),使得tanh' * W_s > 1

  

就会趋近于无穷,这就是RNN中梯度消失和爆炸的原因。

至于怎么避免这种现象,让我在看看 \frac{\partial{L_{t}}}{\partial{W_{x}}}=\sum_{k=0}^{t}{\frac{\partial{L_{t}}}{\partial{O_{t}}}\frac{\partial{O_{t}}}{\partial{S_{t}}}}(\prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}})\frac{\partial{S_{k}}}{\partial{W_{x}}} 梯度消失和爆炸的根本原因就是  这一坨,要消除这种情况就需要把这一坨在求偏导的过程中去掉,至于怎么去掉,一种办法就是使  另一种办法就是使  。其实这就是LSTM做的事情,至于细节问题我在LSTM如何解决梯度消失问题这篇文章中给出了介绍。

 


RNN梯度消失和爆炸_第5张图片

总结:

梯度消失:一句话,RNN梯度消失是因为激活函数tanh函数的倒数在0到1之间,反向传播时更新前面时刻的参数时,当参数W初始化为小于1的数,则多个(tanh函数’ * W)相乘,将导致求得的偏导极小(小于1的数连乘),从而导致梯度消失。

梯度爆炸:当参数初始化为足够大,使得tanh函数的倒数乘以W大于1,则将导致偏导极大(大于1的数连乘),从而导致梯度爆炸。

 

 

你可能感兴趣的:(Deep,Learning)