ConcurrentHashMap源码阅读02

ConcurrentHashMap源码阅读02

  • 前言
  • 正文
    • 建立测试案例
    • UnSafe mechanics
    • 调试分析
      • (1)计算hash值
      • (2)链表数组初始化
      • (3)节点位置为空时进行赋值操作
      • (4)当hash落点上已有节点且hash值为-1
      • (5)当hash落点上已有节点

前言

在上一篇我们介绍了ConcurrentHashMap的常量、存储单元及成员变量。今天我们就结合测试案例来探究一下ConcurrentHashMap中put方法的实现原理。

正文

建立测试案例

建立测试案例如下:

    @Test
    public void test(){
        Map map = new ConcurrentHashMap();
        map.put("a",1);

    }

我们发现在对ConcurrentHashMap内的节点数组进行初始化时,会用到U.compareAndSwapInt方法,那我们就先看看U:

UnSafe mechanics

    // Unsafe mechanics
    private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                (k.getDeclaredField("cellsBusy"));
            Class ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                (ck.getDeclaredField("value"));
            Class ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }

这个静态代码块对上面未初始化的变量进行了初始化:
U,通过UnSafe的获取唯一实例的方法进行初始化

U.objectFieldOffset方法获取的是对应字段在ConcurrentHashMap类的内存中相对于该类首地址的偏移量。

SIZECTL,对应ConcurrentHashMap类的sizeCtl字段;
TRANSFERINDEX ,对应transferIndex字段;
BASECOUNT ,对应baseCount字段;
CELLSBUSY,对应cellsBusy字段;
CELLVALUE,对应CounterCell类的value字段;

U.arrayBaseOffset方法可以获取数组第一个元素的偏移地址。

ABASE,获取以Node[]为元素的数组的第一个元素的偏移地址;

U.arrayIndexScale方法可以获取数组的转换因子,也就是数组中元素的增量地址。将arrayBaseOffset与arrayIndexScale配合使用,可以定位数组中每个元素在内存中的位置。

scale ,获取以Node[]为元素的数组的转换因子。

Integer.numberOfLeadingZeros方法的作用是返回无符号整型i的最高非零位前面的0的个数,包括符号位在内;
如果i为负数,这个方法将会返回0,符号位为1.
比如说,10的二进制表示为 0000 0000 0000 0000 0000 0000 0000 1010
java的整型长度为32位。那么这个方法返回的就是28

ASHIFT ,31减去scale最高非零位前面的0的个数后的结果。

调试分析

进入put方法:

    /**
     * Maps the specified key to the specified value in this table.
     * Neither the key nor the value can be null.
     *
     * 

The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key or value is null */ public V put(K key, V value) { return putVal(key, value, false); }

在这个table中,指定的key对应指定的value。key和value都不可以为null.
使用与原key相同的key作为参数,调用get方法可以获取对应的value.

接下来,我们进入putVal方法:

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node[] tab = table;;) {
            Node f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node p;
                            binCount = 2;
                            if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

(1)计算hash值

首先,进行了判空,若key或value为空,抛出空指针异常。

        if (key == null || value == null) throw new NullPointerException();

接着,调用了spread方法计算出hash值:

        int hash = spread(key.hashCode());

我们看下spread方法:

    /**
     * Spreads (XORs) higher bits of hash to lower and also forces top
     * bit to 0. Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }

将(XORs)较高的哈希值扩展为较低的哈希值,并将最高位强制为0。由于该表使用了2的幂掩码,因此仅在当前掩码之上以位为单位变化的散列集总是会发生冲突。(已知的例子包括在小表中保存连续整数的浮点键集。)因此,我们应用一个转换,将更高位的影响向下传播。位扩展的速度、实用性和质量之间存在权衡。因为许多常见的散列集已经得到了合理的分布(因此不能从扩展中获益),而且我们使用树来处理大量的散列集。

这里hash值得计算方法中使用了位运算。

回到putVal方法继续往下看:

        int binCount = 0;
        for (Node[] tab = table;;) {
            Node f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node p;
                            binCount = 2;
                            if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }

(2)链表数组初始化

定义了binCount 变量,进入for循环,遍历链表数组:
先进行判空,如果tab 为null或者数组长度为0时,对链表数组进行初始化:

            if (tab == null || (n = tab.length) == 0)
                tab = initTable();

我们进入初始化链表数组的方法initTable中去看看:

    /**
     * Initializes table, using the size recorded in sizeCtl.
     */
    private final Node[] initTable() {
        Node[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node[] nt = (Node[])new Node[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

初始化表,使用记录在sizeCtl大小。

1、定义了一个链表数组tab与一个int变量sc,均未初始化;
2、进入while循环,判断当前table是否为空或长度是否为0;
2.1、判断sizeCtl是否小于0,若判断成功,则调用 Thread.yield();将当前线程由RUNNING状态转为READY状态。

  • lost initialization race; just spin(失去初始化竞赛,只是自旋)

2.2、若sizeCtl不小于0,接着判断U.compareAndSwapInt(this, SIZECTL, sc, -1)
我们看看unsafe.compareAndSwapInt方法:

unsafe.compareAndSwapInt(this, valueOffset, expect, update);
  • 这个方法有四个参数,其中第一个参数为需要改变的对象,第二个为偏移量(即之前求出来的valueOffset的值),第三个参数为期待的值,第四个为更新后的值。整个方法的作用即为若调用该方法时,value的值与expect这个值相等,那么则将value修改为update这个值,并返回一个true,如果调用该方法时,value的值与expect这个值不相等,那么不做任何操作,并返回一个false。

由上可知,当SIZECTL等于sc时,将SIZECTL设为-1,并返回true,即判断成功:
Ⅰ如果当前链表为空,则对链表进行初始化,并将n - (n >>> 2)的值赋给sc.
Ⅱ 将sc的值赋给sizeCtl
接着跳出循环,将tab返回,链表数组初始化结束。

(3)节点位置为空时进行赋值操作

回到putVal方法:
若链表数组不为空,对(f = tabAt(tab, i = (n - 1) & h)) == null进行判断,我们看看tabAt方法:

    static final  Node tabAt(Node[] tab, int i) {
        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

U.getObjectVolatile方法:
public native Object getObjectVolatile(Object obj, long offset);
获取obj对象中offset偏移地址对应的object型field的值,支持volatile load语义。
参数:
包含需要去读取的field的对象
obj中object型field的偏移量

原来tabAt方法是利用内存偏移地址来获取利用hash值确定索引位置的数组元素,即获取对应的链表数组节点。
当对应索引位置上存在链表数组节点时,判断成立,进入下一个判断:

                if (casTabAt(tab, i, null,
                             new Node(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin

看下casTabAt方法:

    static final  boolean casTabAt(Node[] tab, int i,
                                        Node c, Node v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }

U.compareAndSwapObject方法:
public native boolean compareAndSwapObject(Object obj, long offset, Object expect, Object update);
在obj的offset位置比较object field和期望的值,如果相同则更新。这个方法的操作应该是原子的,因此提供了一种不可中断的方式更新object field。
参数:
包含要修改field的对象
obj中object型field的偏移量
希望field中存在的值
如果期望值expect与field的当前值相同,设置filed的值为这个新值
返回值:field的值是否被更改

通过原子操作判断,保证偏移地址为i的节点不为空,若判断成立,即节点被更改时,跳出循环。

(4)当hash落点上已有节点且hash值为-1

				else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);

看下helpTransfer方法:

	/**
     * Helps transfer if a resize is in progress.
     */
    final Node[] helpTransfer(Node[] tab, Node f) {
        Node[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

ForwardingNode:在转移操作时向容器头部插入的节点。
判断当前节点是ForwardingNode节点并不是头节点即判断成功,调用resizeStamp方法。

    /**
     * Returns the stamp bits for resizing a table of size n.
     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
     */
    static final int resizeStamp(int n) {
        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
    }

然后满足条件时,进行扩容操作:

    /**
     * Moves and/or copies the nodes in each bin to new table. See
     * above for explanation.
     */
    private final void transfer(Node[] tab, Node[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node[] nt = (Node[])new Node[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode fwd = new ForwardingNode(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node lastRun = f;
                            for (Node p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node(ph, pk, pv, ln);
                                else
                                    hn = new Node(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin t = (TreeBin)f;
                            TreeNode lo = null, loTail = null;
                            TreeNode hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode p = new TreeNode
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

默认扩容长度是原链表数组长度的2倍。

(5)当hash落点上已有节点

我们看下ConcurrentHashMap做了什么操作:

				V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node p;
                            binCount = 2;
                            if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }

若onlyIfAbsent为false,则对原值进行替换;若onlyIfAbsent为true,则不做修改。

你可能感兴趣的:(JUC框架)