[Matlab] mex混编OpenCV

最近需要用到Matlab C++混编,研究了一下Matlab中混编C++版本OpenCV的方法。

例子是opencv中sample里的一个em算法,mex_em.cpp,核心的mexFunction函数内容如下,必须严格按照mex要求编写 

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )

nlhs表示输出变量数目; plhs表示输出变量指针; nrhs表示输入变量数目; prhs表示输入变量指针;


Sample1: matlab 传矩阵到mexfunction中,转为opencv的Mat格式,最终返回处理后的矩阵。

mexfuntion内容为:

#include "mex.h"
#include 
#include "opencv2/core/core.hpp"
using namespace std;
using namespace cv;
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
        const mxArray *prhs[]) {
    
    int Rows=mxGetM(prhs[0]);
    int Cols=mxGetN(prhs[0]);
    double *pIn = mxGetPr(prhs[0]);
    cout<(i,j);
}

编译代码

OpenCV_INLCUDE_DIR = '-I/usr/local/include -I/usr/local/include/opencv -I/usr/local/include/opencv2 '
OpenCV_LIBRARY_DIR = '-L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_contrib -lopencv_legacy';  

eval(['mex feature_extractor_mex.cpp ' OpenCV_INLCUDE_DIR OpenCV_LIBRARY_DIR]);  

输入矩阵为:

A =

     8     5    10    12     9    11
    21    19     2     4    18     7
    16    15    14    20    22     3
    17    23     1     6    13    24

[Matlab] mex混编OpenCV_第1张图片


Sample2:  mex_em.cpp:这个例子相对简单,不需要输入数据,opencv全部都完成em算法,最后在mex函数中输出结果图像,在matlab中显示。

#include "mex.h"

#include 
#include 
#include 
#include  

#include  
#include 
#include 
#include 

#include "matlab_multiarray.hpp"

using namespace cv;
using namespace std;

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{ 
    
    const int N = 4;
    const int N1 = (int)sqrt((double)N);
    const Scalar colors[] =
    {
        Scalar(0,0,255), Scalar(0,255,0),
        Scalar(0,255,255),Scalar(255,255,0)
    };

    int i, j;
    int nsamples = 100;
    Mat samples( nsamples, 2, CV_32FC1 );
    Mat labels;
    Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
    
    
    
    Mat sample( 1, 2, CV_32FC1 );
    CvEM em_model;
    CvEMParams params;

    samples = samples.reshape(2, 0);
    for( i = 0; i < N; i++ )
    {
        // form the training samples
        Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );

        Scalar mean(((i%N1)+1)*img.rows/(N1+1),
                    ((i/N1)+1)*img.rows/(N1+1));
        Scalar sigma(30,30);
        randn( samples_part, mean, sigma );
    }
    samples = samples.reshape(1, 0);

    // initialize model parameters
    params.covs      = NULL;
    params.means     = NULL;
    params.weights   = NULL;
    params.probs     = NULL;
    params.nclusters = N;
    params.cov_mat_type       = CvEM::COV_MAT_SPHERICAL;
    params.start_step         = CvEM::START_AUTO_STEP;
    params.term_crit.max_iter = 300;
    params.term_crit.epsilon  = 0.1;
    params.term_crit.type     = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;

    // cluster the data
    printf("cluster the data\n");
    em_model.train( samples, Mat(), params, &labels );
    
    
    // classify every image pixel
    for( i = 0; i < img.rows; i++ )
    {
        for( j = 0; j < img.cols; j++ )
        {
            sample.at(0) = (float)j;
            sample.at(1) = (float)i;
            int response = cvRound(em_model.predict( sample ));
            Scalar c = colors[response];

            circle( img, Point(j, i), 1, c*0.75, CV_FILLED );
        }
    }
    
    //draw the clustered samples
    for( i = 0; i < nsamples; i++ )
    {
        Point pt(cvRound(samples.at(i, 0)), cvRound(samples.at(i, 1)));
        circle( img, pt, 1, colors[labels.at(i)], CV_FILLED );
    }
    
    int height = img.rows;
    int width = img.cols;
    int channels = img.channels();
    const int DIMEN = 3;
    mwSize dims[DIMEN] = {height, width, channels};
    plhs[0] = mxCreateNumericArray(DIMEN, dims, mxUINT8_CLASS, mxREAL); 
    
    MatlabMultiArray3 out_Mat(plhs[0]);
    
    uchar* data= img.ptr(0);  
    for (int i = 0; i < height; i++){
        for (int j = 0; j < width; j++){
            out_Mat[i][j][0]=*(data++);
            out_Mat[i][j][1]=*(data++);
            out_Mat[i][j][2]=*(data++);
        }
    }    
}




注: 在mexFunction函数中将OpenCV的Mat数据结构输出采用了,matlab_multiarray.hpp,来自于CVPR2014文章提供的工具函数,其中的数据结构MatlabMultiArray3 还蛮好用的,还有二维数组MatlabMultiArray。

可以编写一个build文件,编译mex_em.cpp文件,并测试,如下Demo.m:

OpenCV_INLCUDE_DIR = '-I/usr/local/include -I/usr/local/include/opencv -I/usr/local/include/opencv2 ';
Boost_INCLUDE_DIR = '-I/usr/local/Cellar/boost/1.59.0/include/'
INCLUDE_DIR = [OpenCV_INLCUDE_DIR Boost_INCLUDE_DIR];
LIBRARY_DIR = '-L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_legacy ';

eval(['mex mex_em.cpp ' INCLUDE_DIR LIBRARY_DIR]);

dst = mex_em();

imshow(dst);

注:由于用到了OpenCV库和Boost库,mex命令后后面需要加上相应的include,lib路径,以及opencv相关的lib库,与C++编译opencv类似。然后执行命令就可以了。


Matlab混编opencv的结果:

[Matlab] mex混编OpenCV_第2张图片


C++ CMake编译结果:
[Matlab] mex混编OpenCV_第3张图片



Sample3:  另一个例子是Matlab传图像给mexFunction,执行彩色图像分离成单通道图像的操作,并返回结果显示。

#include "mex.h"
#include "matlab_multiarray.hpp"  //MatlabMultiArray3 out_Mat(plhs[0])

#include "cv.h"
#include "highgui.h"
#include  

#include 
#include 
#include 

using namespace cv;
using namespace std;

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{ 
    RNG& rng = theRNG();
    
    uchar* pData;
    int width, height, channels;
    const int *dim_array;

	pData = (uchar *) mxGetPr(prhs[0]);

    int numberOfElements = mxGetNumberOfElements(prhs[0]);
    
    dim_array = mxGetDimensions(prhs[0]);
    height = *dim_array;
    width = *(dim_array+1);
    channels = *(dim_array+2);
    
    printf("height=%d,width=%d,channel=%d,numberOfElements=%d\n",height,width,channels,numberOfElements);
    //mexPrintf("height=%d,width=%d,dim_array=%d\n",height,width,dim_array);

    // 复制数据
    Mat srcImg(height, width, CV_8UC3);
    printf("rows=%d,cols=%d,channels=%d\n",srcImg.rows,srcImg.cols,srcImg.channels());
    Mat planes[] = {Mat::zeros(height, width, CV_8UC1),
                    Mat::zeros(height, width, CV_8UC1), 
                    Mat::zeros(height, width, CV_8UC1)};  
    
    for(int c = 0; c < channels; c++){
        for (int i = 0; i < height; i++){
            for (int j = 0; j < width; j++){
                planes[c].at(i,j) = pData[c*height*width + height*j + i]; 
                //printf("%d ",pData[c*height*width + height*j + i]); 
            }
        }
	}
                    
	// 因为C与Matlab的存储方式不同,C是按行存储,Matlab是按列存储
	// 所以将图片转置
    Mat dstImg = srcImg.clone();
    
    
    
    const int DIMEN = 3, DIMEN2 = 2;
    
    mwSize dims[DIMEN] = {height, width, channels};
    mwSize dims2[DIMEN2] = {height, width};
    
    plhs[0] = mxCreateNumericArray(DIMEN, dims, mxUINT8_CLASS, mxREAL); 
    plhs[1] = mxCreateNumericArray(DIMEN2, dims2, mxUINT8_CLASS, mxREAL);   
    plhs[2] = mxCreateNumericArray(DIMEN2, dims2, mxUINT8_CLASS, mxREAL);   
    plhs[3] = mxCreateNumericArray(DIMEN2, dims2, mxUINT8_CLASS, mxREAL);   
    
    MatlabMultiArray3 out_Mat(plhs[0]);
    MatlabMultiArray out_Mat2(plhs[1]);
    MatlabMultiArray out_Mat3(plhs[2]);
    MatlabMultiArray out_Mat4(plhs[3]);
    
    for (int i = 0; i < height; i++){
        for (int j = 0; j < width; j++){
            out_Mat[i][j][0]=planes[0].at(i,j);
            out_Mat[i][j][1]=planes[1].at(i,j);
            out_Mat[i][j][2]=planes[2].at(i,j);
            
            out_Mat2[i][j]=planes[0].at(i,j);
            out_Mat3[i][j]=planes[1].at(i,j);
            out_Mat4[i][j]=planes[2].at(i,j);
        }
    }
}




编译测试:

INCLUDE_DIR = '-I/usr/local/include -I/usr/local/include/opencv -I/usr/local/include/opencv2 ';
LIBRARY_DIR = '-L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui ';

eval(['mex mex_ColorImage2singleChannelImage.cpp ' INCLUDE_DIR LIBRARY_DIR]);

imgColor = imread('pokemon.jpg');
imgGray = rgb2gray(imgColor);

[dst1, dst2, dst3, dst4] = mex_ColorImage2singleChannelImage(imgColor);

figure;
subplot(2,2,1);imshow(dst1);subplot(2,2,2);imshow(dust);
subplot(2,2,3);imshow(dst3);subplot(2,2,4);imshow(dst4);

输出结果:


[Matlab] mex混编OpenCV_第4张图片


Sample4: Matlab 传图像数据给mexfunction进行处理,返回opencv库的相应处理后的图像数据

#include "mex.h"
#include 
#include 
#include 


#include   
#include 
#include 
#include 


using namespace std;
using namespace cv;


void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
        const mxArray *prhs[]) {
    
    uchar *inData = (uchar*)mxGetPr(prhs[0]); //获得指向输入矩阵的指针
    int rows = mxGetM(prhs[0]); //获得输入矩阵的行数 
    int cols = mxGetN(prhs[0]); //获得输入矩阵的列数 
    int channel = mxGetNumberOfDimensions(prhs[0]);//灰度图为2,彩色图为3
    if(channel == 2)
    {
        cout<<"Channel: "<(i, j) = *(inData + i + j * rows);
        
        Mat out;
        flip(image, out, 1);
        
        plhs[0] = mxCreateDoubleMatrix(rows, cols, mxREAL);  
        double *outData;   
        outData = mxGetPr(plhs[0]);  
        for (int i = 0; i < rows; i++)  
            for (int j = 0; j < cols; j++)  
                 *(outData + i + j * rows) = (double)out.at(i, j);
    }
    else{
        cols = cols/channel;
        Mat image(rows,cols,CV_8UC3);//CV_8UC3
        uchar *InCurRow;
        for (int i = 0; i < rows; i++){
            InCurRow = (uchar*)image.ptr(i);//获取第i行的指针
            for (int j = 0; j < cols; j++)  
                for (int k = 0; k < channel; k++)
                      *(InCurRow + j * channel + (2 - k)) = *(inData + i + j * rows + k * rows * cols);
        }


        Mat out;
        flip(image, out, 1);
        
        plhs[0] = mxCreateDoubleMatrix(rows, cols, mxREAL);  
        double *outData_R = mxGetPr(plhs[0]); 
        plhs[1] = mxCreateDoubleMatrix(rows, cols, mxREAL);  
        double *outData_G = mxGetPr(plhs[1]); 
        plhs[2] = mxCreateDoubleMatrix(rows, cols, mxREAL);  
        double *outData_B = mxGetPr(plhs[2]); 


         for (int i = 0; i < rows; i++){
            for (int j = 0; j < cols; j++)  {
                *(outData_R + i + j * rows) = (double)out.at(i, j)[2];
                *(outData_G + i + j * rows) = (double)out.at(i, j)[1];
                *(outData_B + i + j * rows) = (double)out.at(i, j)[0];
            }
        } 
    } 
}


Matlab 命令:

A = imread('Running_0013.jpg');
figure;imshow(A);

[R,G,B] = feature_extractor_mex(A);
figure;imshow(uint8(R));
figure;imshow(uint8(G));
figure;imshow(uint8(B));

imgRGB = cat(3,uint8(R),uint8(G),uint8(B))
figure;imshow(imgRGB);

matlab返回结果:

原图

[Matlab] mex混编OpenCV_第5张图片


返回的R, G, B 三通道图是double类型的,需要转换为uint8类型才能在matlab中显示

[Matlab] mex混编OpenCV_第6张图片


采用 cat(3,uint8(R),uint8(G),uint8(B)) 函数将三通道图合并为彩色图像。

[Matlab] mex混编OpenCV_第7张图片



参考:

1. mex如何调用外部库(以OpenCV为例)

2. CVPR 2014 Code


你可能感兴趣的:(OpenCV,Matlab,C++,混编)