在Python读取mat文件,并保存为pickle格式

这两天在搞Theano,要把mat文件转成pickle格式载入Python。

Matlab是把一维数组当做n*1的矩阵的,但Numpy里还是有vector和matrix的区别,Theano也是对二者做了区分。

直接把代码贴出来吧,好像也没什么可讲的 = =

from scipy.io import loadmat
import numpy, cPickle

data_dict=loadmat(r'E:\dataset\CIFAR10\CIFAR10_small.mat') #need an r!

my_array=numpy.array([1,1])
for key in data_dict.keys():
    if type(data_dict[key]) == type(my_array):
        #print matrix information
        print key, type(data_dict[key]),
        print data_dict[key].shape
    
#shape(n,1) (matrix in theano) -> shape(n,) (vector in theano)
print data_dict['Ytr'].shape
Ytr=numpy.hstack(data_dict['Ytr'])
Yte=numpy.hstack(data_dict['Yte'])
Yte=numpy.hstack(data_dict['Yte'])
print Ytr.shape

train_set=(data_dict['Xtr'],Ytr)
valid_set =(data_dict['Xte'],Yte)
test_set =(data_dict['Xte'],Yte)

output = open('cifar10_small_v.pkl', 'wb')

cPickle.dump(train_set, output)
cPickle.dump(valid_set, output)
cPickle.dump(test_set,  output)

output.close()
print 'save is done'

pkl_file = open('cifar10_small_v.pkl', 'rb')

data1 = cPickle.load(pkl_file) # is train_set
data2 = cPickle.load(pkl_file) # is valid_set
data3 = cPickle.load(pkl_file) # is test_set

print type(data1[1]),data1[1].shape

pkl_file.close()


你可能感兴趣的:(Python,Matlab)