使用Keras预训练好的模型进行目标类别预测

使用Keras预训练好的模型进行预测

  • 前言
    • 环境搭建相关就此省去,网上非常多。我觉得没啥难度
    • 导入权重,首次会从网络进行下载,不过速度还是挺快的,使用ImageNet的数据集
    • 定义一个函数读取图片文件并处理。这里需要安装PLI的库。 pip install Pillow ,不然会报错
    • 加载一个图片文件,默认在当前路径寻找
    • 哈哈,开始预测了!激动人心啊
    • 执行速度很快,现在看看结果

前言

最近开始学习深度学习相关的内容,各种书籍、教程下来到目前也有了一些基本的理解。参考Keras的官方文档自己做一个使用application的小例子,能够对图片进行识别,并给出可能性最大的分类。
闲言少叙,开始写代码

环境搭建相关就此省去,网上非常多。我觉得没啥难度

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

导入权重,首次会从网络进行下载,不过速度还是挺快的,使用ImageNet的数据集

model = ResNet50(weights='imagenet')

定义一个函数读取图片文件并处理。这里需要安装PLI的库。 pip install Pillow ,不然会报错

def load_image(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    return x

加载一个图片文件,默认在当前路径寻找

x=load_image('zebra.jpg')

哈哈,开始预测了!激动人心啊

preds = model.predict(x)

执行速度很快,现在看看结果

print('Predicted:', decode_predictions(preds, top=3)[0])

Predicted: [(‘n02391049’, ‘zebra’, 0.99566585), (‘n02423022’, ‘gazelle’, 0.0010297714), (‘n01518878’, ‘ostrich’, 0.00067320856)]
准确率还是不错,后续还测试了一些飞机之类的图片,总体来讲马马虎虎!
是不是非常简单,确实很简单!

你可能感兴趣的:(deep-learning)