DICOM DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。它定义了质量能满足临床需要的可用于数据交换的医学图像格式,可用于处理、存储、打印和传输医学影像信息。DICOM可以便捷地交换于两个满足DICOM格式协议的工作站之间。目前该协议标准不仅广泛应用于大型医院,而且已成为小型诊所和牙科诊所医生办公室的标准影像阅读格式。
DICOM被广泛应用于放射医疗、心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当前大约有百亿级符合DICOM标准的医学图像用于临床使用。
目前,越来越多的DICOM应用程序和分析软件被运用于临床医学,促使越来越多的编程语言开发出支持DICOM API的框架。今天就让我来介绍一下Python语言下支持的DICOM模块,以及如何完成基本DICOM信息分析和处理的编程方法。
Pydicom
Pydicom是一个处理DICOM文件的纯Python软件包。它可以通过非常容易的“Pythonic”的方式来提取和修改DICOM数据,修改后的数据还会借此生成新的DICOM文件。作为一个纯Python包,Pydicom可以在Python解释器下任何平台运行,除了必须预先安装Numpy模块外,几乎无需其它任何配置要求。其局限性之一是无法处理压缩像素图像(如JPEG),其次是无法处理分帧动画图像(如造影电影)。
SimpleITK
Insight Segmentation and Registration Toolkit (ITK)是一个开源、跨平台的框架,可以提供给开发者增强功能的图像分析和处理套件。其中最为著名的就是SimpleITK,是一个简化版的、构建于ITK最顶层的模块。SimpleITK旨在易化图像处理流程和方法。
PIL
Python Image Library (PIL) 是在Python环境下不可缺少的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能,而且API却非常简单易用。
OpenCV
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
下面Python代码来演示如何编程处理心血管冠脉造影DICOM图像信息。
1. 导入主要框架:SimpleITK、pydicom、PIL、cv2和numpy
import SimpleITK as sitk
from PIL import Image
import pydicom
import numpy as np
import cv2
2. 应用SimpleITK框架来读取DICOM文件的矩阵信息。如果DICOM图像是三维螺旋CT图像,则帧参数则代表CT扫描层数;而如果是造影动态电影图像,则帧参数就是15帧/秒的电影图像帧数。
def loadFile(filename):
ds = sitk.ReadImage(filename)
img_array = sitk.GetArrayFromImage(ds)
frame_num, width, height = img_array.shape
return img_array, frame_num, width, height
3. 应用pydicom来提取患者信息。
def loadFileInformation(filename):
information = {}
ds = pydicom.read_file(filename)
information['PatientID'] = ds.PatientID
information['PatientName'] = ds.PatientName
information['PatientBirthDate'] = ds.PatientBirthDate
information['PatientSex'] = ds.PatientSex
information['StudyID'] = ds.StudyID
information['StudyDate'] = ds.StudyDate
information['StudyTime'] = ds.StudyTime
information['InstitutionName'] = ds.InstitutionName
information['Manufacturer'] = ds.Manufacturer
information['NumberOfFrames'] = ds.NumberOfFrames
return information
4. 应用PIL来检查图像是否被提取。
def showImage(img_array, frame_num = 0):
img_bitmap = Image.fromarray(img_array[frame_num])
return img_bitmap
5. 采用CLAHE (Contrast Limited Adaptive Histogram Equalization)技术来优化图像。
def limitedEqualize(img_array, limit = 4.0):
img_array_list = []
for img in img_array:
clahe = cv2.createCLAHE(clipLimit = limit, tileGridSize = (8,8))
img_array_list.append(clahe.apply(img))
img_array_limited_equalized = np.array(img_array_list)
return img_array_limited_equalized
这一步对于整个图像处理起到很重要的作用,可以根据不同的原始DICOM图像的窗位和窗宽来进行动态调整,以达到最佳的识别效果。
原始图像:
经过自动窗位窗宽调节,生成:
再经过CLAHE优化,则生成:
最后应用OpenCV的Python框架cv2把每帧图像组合在一起,生成通用视频格式。
def writeVideo(img_array):
frame_num, width, height = img_array.shape
filename_output = filename.split('.')[0] + '.avi'
video = cv2.VideoWriter(filename_output, -1, 16, (width, height))
for img in img_array:
video.write(img)
video.release()
由于我没有数据,微信图片无法复制过来,只能看看代码了,详细图片请看参考。
======================================================================================================
VTK加载DICOM数据
import vtk
from vtk.util import numpy_support
import numpy
PathDicom = "./dir_with_dicom_files/"
reader = vtk.vtkDICOMImageReader()
reader.SetDirectoryName(PathDicom)
reader.Update()
# Load dimensions using `GetDataExtent`
_extent = reader.GetDataExtent()
ConstPixelDims = [_extent[1]-_extent[0]+1, _extent[3]-_extent[2]+1, _extent[5]-_extent[4]+1]
# Load spacing values
ConstPixelSpacing = reader.GetPixelSpacing()
# Get the 'vtkImageData' object from the reader
imageData = reader.GetOutput()
# Get the 'vtkPointData' object from the 'vtkImageData' object
pointData = imageData.GetPointData()
# Ensure that only one array exists within the 'vtkPointData' object
assert (pointData.GetNumberOfArrays()==1)
# Get the `vtkArray` (or whatever derived type) which is needed for the `numpy_support.vtk_to_numpy` function
arrayData = pointData.GetArray(0)
# Convert the `vtkArray` to a NumPy array
ArrayDicom = numpy_support.vtk_to_numpy(arrayData)
# Reshape the NumPy array to 3D using 'ConstPixelDims' as a 'shape'
ArrayDicom = ArrayDicom.reshape(ConstPixelDims, order='F')
PYDICOM加载DICOM数据:
可以在https://github.com/darcymason/pydicom的test里面看怎么用代码。
import dicom
import os
import numpy
PathDicom = "./dir_with_dicom_series/"
lstFilesDCM = [] # create an empty list
for dirName, subdirList, fileList in os.walk(PathDicom):
for filename in fileList:
if ".dcm" in filename.lower(): # check whether the file's DICOM
lstFilesDCM.append(os.path.join(dirName,filename))
# Get ref file
RefDs = dicom.read_file(lstFilesDCM[0])
# Load dimensions based on the number of rows, columns, and slices (along the Z axis)
ConstPixelDims = (int(RefDs.Rows), int(RefDs.Columns), len(lstFilesDCM))
# Load spacing values (in mm)
ConstPixelSpacing = (float(RefDs.PixelSpacing[0]), float(RefDs.PixelSpacing[1]), float(RefDs.SliceThickness))
# The array is sized based on 'ConstPixelDims'
ArrayDicom = numpy.zeros(ConstPixelDims, dtype=RefDs.pixel_array.dtype)
# loop through all the DICOM files
for filenameDCM in lstFilesDCM:
# read the file
ds = dicom.read_file(filenameDCM)
# store the raw image data
ArrayDicom[:, :, lstFilesDCM.index(filenameDCM)] = ds.pixel_array
转换VTK built-in types to SimpleITK/ITK built-ins and vice-versa
import vtk
import SimpleITK
dctITKtoVTK = {SimpleITK.sitkInt8: vtk.VTK_TYPE_INT8,
SimpleITK.sitkInt16: vtk.VTK_TYPE_INT16,
SimpleITK.sitkInt32: vtk.VTK_TYPE_INT32,
SimpleITK.sitkInt64: vtk.VTK_TYPE_INT64,
SimpleITK.sitkUInt8: vtk.VTK_TYPE_UINT8,
SimpleITK.sitkUInt16: vtk.VTK_TYPE_UINT16,
SimpleITK.sitkUInt32: vtk.VTK_TYPE_UINT32,
SimpleITK.sitkUInt64: vtk.VTK_TYPE_UINT64,
SimpleITK.sitkFloat32: vtk.VTK_TYPE_FLOAT32,
SimpleITK.sitkFloat64: vtk.VTK_TYPE_FLOAT64}
dctVTKtoITK = dict(zip(dctITKtoVTK.values(),
dctITKtoVTK.keys()))
def convertTypeITKtoVTK(typeITK):
if typeITK in dctITKtoVTK:
return dctITKtoVTK[typeITK]
else:
raise ValueError("Type not supported")
def convertTypeVTKtoITK(typeVTK):
if typeVTK in dctVTKtoITK:
return dctVTKtoITK[typeVTK]
else:
raise ValueError("Type not supported")
VTK-SimpleITK绘制数据
#!/usr/bin/python
import SimpleITK as sitk
import vtk
import numpy as np
from vtk.util.vtkConstants import *
def numpy2VTK(img,spacing=[1.0,1.0,1.0]):
# evolved from code from Stou S.,
# on http://www.siafoo.net/snippet/314
importer = vtk.vtkImageImport()
img_data = img.astype('uint8')
img_string = img_data.tostring() # type short
dim = img.shape
importer.CopyImportVoidPointer(img_string, len(img_string))
importer.SetDataScalarType(VTK_UNSIGNED_CHAR)
importer.SetNumberOfScalarComponents(1)
extent = importer.GetDataExtent()
importer.SetDataExtent(extent[0], extent[0] + dim[2] - 1,
extent[2], extent[2] + dim[1] - 1,
extent[4], extent[4] + dim[0] - 1)
importer.SetWholeExtent(extent[0], extent[0] + dim[2] - 1,
extent[2], extent[2] + dim[1] - 1,
extent[4], extent[4] + dim[0] - 1)
importer.SetDataSpacing( spacing[0], spacing[1], spacing[2])
importer.SetDataOrigin( 0,0,0 )
return importer
def volumeRender(img, tf=[],spacing=[1.0,1.0,1.0]):
importer = numpy2VTK(img,spacing)
# Transfer Functions
opacity_tf = vtk.vtkPiecewiseFunction()
color_tf = vtk.vtkColorTransferFunction()
if len(tf) == 0:
tf.append([img.min(),0,0,0,0])
tf.append([img.max(),1,1,1,1])
for p in tf:
color_tf.AddRGBPoint(p[0], p[1], p[2], p[3])
opacity_tf.AddPoint(p[0], p[4])
# working on the GPU
# volMapper = vtk.vtkGPUVolumeRayCastMapper()
# volMapper.SetInputConnection(importer.GetOutputPort())
# # The property describes how the data will look
# volProperty = vtk.vtkVolumeProperty()
# volProperty.SetColor(color_tf)
# volProperty.SetScalarOpacity(opacity_tf)
# volProperty.ShadeOn()
# volProperty.SetInterpolationTypeToLinear()
# working on the CPU
volMapper = vtk.vtkVolumeRayCastMapper()
compositeFunction = vtk.vtkVolumeRayCastCompositeFunction()
compositeFunction.SetCompositeMethodToInterpolateFirst()
volMapper.SetVolumeRayCastFunction(compositeFunction)
volMapper.SetInputConnection(importer.GetOutputPort())
# The property describes how the data will look
volProperty = vtk.vtkVolumeProperty()
volProperty.SetColor(color_tf)
volProperty.SetScalarOpacity(opacity_tf)
volProperty.ShadeOn()
volProperty.SetInterpolationTypeToLinear()
# Do the lines below speed things up?
# pix_diag = 5.0
# volMapper.SetSampleDistance(pix_diag / 5.0)
# volProperty.SetScalarOpacityUnitDistance(pix_diag)
vol = vtk.vtkVolume()
vol.SetMapper(volMapper)
vol.SetProperty(volProperty)
return [vol]
def vtk_basic( actors ):
"""
Create a window, renderer, interactor, add the actors and start the thing
Parameters
----------
actors : list of vtkActors
Returns
-------
nothing
"""
# create a rendering window and renderer
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.SetSize(600,600)
# ren.SetBackground( 1, 1, 1)
# create a renderwindowinteractor
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
for a in actors:
# assign actor to the renderer
ren.AddActor(a )
# render
renWin.Render()
# enable user interface interactor
iren.Initialize()
iren.Start()
#####
filename = 'toto.nii.gz'
img = sitk.ReadImage( filename ) # SimpleITK object
data = sitk.GetArrayFromImage( img ) # numpy array
from scipy.stats.mstats import mquantiles
q = mquantiles(data.flatten(),[0.7,0.98])
q[0]=max(q[0],1)
q[1] = max(q[1],1)
tf=[[0,0,0,0,0],[q[0],0,0,0,0],[q[1],1,1,1,0.5],[data.max(),1,1,1,1]]
actor_list = volumeRender(data, tf=tf, spacing=img.GetSpacing())
vtk_basic(actor_list)
下面一个不错的软件:
https://github.com/bastula/dicompyler
还有一个python的库mudicom,https://github.com/neurosnap/mudicom
import mudicom
mu = mudicom.load("mudicom/tests/dicoms/ex1.dcm")
# returns array of data elements as dicts
mu.read()
# returns dict of errors and warnings for DICOM
mu.validate()
# basic anonymization
mu.anonymize()
# save anonymization
mu.save_as("dicom.dcm")
# creates image object
img = mu.image # before v0.1.0 this was mu.image()
# returns numpy array
img.numpy # before v0.1.0 this was mu.numpy()
# using Pillow, saves DICOM image
img.save_as_pil("ex1.jpg")
# using matplotlib, saves DICOM image
img.save_as_plt("ex1_2.jpg")
参考:
微信