论文笔记:Inception-V4, Inception-ResNet

1. Motivation: residual connections work well for deep network ==> can be combined with  Inception ( Inception-ResNet) 
 
2. architecture
a. replace filter concatenation of  inception with residual connection 
论文笔记:Inception-V4, Inception-ResNet_第1张图片
(the 1 x 1 conv after  inception layer aims to scale up the dimension before adding to the input)
b. scaling down the residuals (multiple scaling factor 0.1~0.3) before addition ==> stabilize the training (prevent weights from going to 0)

2. Batch normalization: on top of traditional layers (excluding summation layer to reduce computational cost), prevent saturating. 

3. performance.(for detailed differences bw models, please refer to the paper) 

论文笔记:Inception-V4, Inception-ResNet_第2张图片
论文笔记:Inception-V4, Inception-ResNet_第3张图片

你可能感兴趣的:(DL)