sklearn.grid_search.GridSearchCV(estimator,
param_grid, scoring=None, fit_params=None,
n_jobs=1, iid=True, refit=True, cv=None,
verbose=0, pre_dispatch='2*n_jobs', error_score='raise')
GridSearchCV实现了fit,predict,predict_proba等方法,并通过交叉验证对参数空间进行求解,寻找最佳的参数。
下面是一个官方介绍:
from __future__ import print_function
from pprint import pprint
from time import time
import logging
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
print(__doc__)
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
###############################################################################
# Load some categories from the training set
categories = [
'alt.atheism',
'talk.religion.misc',
]
# Uncomment the following to do the analysis on all the categories
#categories = None
print("Loading 20 newsgroups dataset for categories:")
print(categories)
data = fetch_20newsgroups(subset='train', categories=categories)
print("%d documents" % len(data.filenames))
print("%d categories" % len(data.target_names))
print()
###############################################################################
# 使用pipeline定义文本分类问题常见的工作流,包含向量化和一个简单的分类器
pipeline = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier()),
])
# 参数空间:
# 定义了pipeline中各个模型的需要穷尽求解的参数空间,比如:clf__penalty': ('l2', 'elasticnet')
# 表示SGDClassifier分类器的正则化选项为L2和elasticnet,训练时模型会分别使用这两个正则化方法来寻求最佳的方式
parameters = {
'vect__max_df': (0.5, 0.75, 1.0),
#'vect__max_features': (None, 5000, 10000, 50000),
'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams
#'tfidf__use_idf': (True, False),
#'tfidf__norm': ('l1', 'l2'),
'clf__alpha': (0.00001, 0.000001),
'clf__penalty': ('l2', 'elasticnet'),
#'clf__n_iter': (10, 50, 80),
}
if __name__ == "__main__":
# 通过GridSearchCV来寻求最佳参数空间
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)
print("Performing grid search...")
print("pipeline:", [name for name, _ in pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
# 这里只需调用一次fit函数就可以了
grid_search.fit(data.data, data.target)
print("done in %0.3fs" % (time() - t0))
print()
# 输出best score
print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
# 输出最佳的分类器到底使用了怎样的参数
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print("\t%s: %r" % (param_name, best_parameters[param_name]))
输出如下:
Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc']
1427 documents
2 categories
Performing grid search...
pipeline: ['vect', 'tfidf', 'clf']
parameters:
{'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07),
'clf__n_iter': (10, 50, 80),
'clf__penalty': ('l2', 'elasticnet'),
'tfidf__use_idf': (True, False),
'vect__max_n': (1, 2),
'vect__max_df': (0.5, 0.75, 1.0),
'vect__max_features': (None, 5000, 10000, 50000)}
done in 1737.030s
Best score: 0.940
Best parameters set:
clf__alpha: 9.9999999999999995e-07
clf__n_iter: 50
clf__penalty: 'elasticnet'
tfidf__use_idf: True
vect__max_n: 2
vect__max_df: 0.75
vect__max_features: 50000