通常情况下,无论是web浏览器还是移动app,我们与服务器之间的交互都是主动的,客户端向服务器端发出请求,然后服务器端返回数据给客户端,客户端浏览器再将信息呈现,客户端与服务端对应的模式是: 客户端请求--服务端响应,这种机制对于信息变化不是特别频繁的应用尚可,但对于实时要求高、海量并发的应用来说显得捉襟见肘,尤其在当前业界移动互联网蓬勃发展的趋势下,高并发与用户实时响应是 Web 应用经常面临的问题,比如金融证券的实时信息,Web 导航应用中的地理位置获取,社交网络的实时消息推送,新闻的订阅,天气的提醒等。这些情况下,需要服务器主动推送消息给客户端。
那么在这样的模式下,会有几个问题需要我们思考下:
1.应用服务器如何确定每一个应用所在的设备
2.服务器端是如何将消息推送到客户端的,客户端又不像服务器有一个固定的地址
带着这些疑问我们来研究一下目前有哪些技术可以解决该问题:
所谓的Ajax轮询,其实就是定时的通过Ajax查询服务端,客户端按规定时间定时像服务端发送ajax请求,服务器接到请求后马上返回响应信息并关闭连接。
这种技术方式实现起来非常简单,但是这种方式会有非常严重的问题,就是需要不断的向服务器发送消息询问,这种方式会对服务器造成极大的性能浪费。
还有一个类似的轮询是使用JSONP跨域请求的方式轮询,在实现起来有差别,但基本原理都是相同的,都是客户端不断的向服务器发起请求。
优点
实现简单。
缺点
这是通过模拟服务器发起的通信,不是实时通信,不顾及应用的状态改变而盲目检查更新,导致服务器资源的浪费,且会加重网络负载,拖累服务器。
Comet,基于 HTTP 长连接的 "服务器推" 技术,能使服务器端主动以异步的方式向客户端程序推送数据,而不需要客户端显式的发出请求,目前有两种实现方式:
Ajax 的出现使得 JavaScript 可以调用 XMLHttpRequest 对象发出 HTTP 请求,JavaScript 响应处理函数根据服务器返回的信息对 HTML 页面的显示进行更新。使用 AJAX 实现 "服务器推" 与传统的 AJAX 应用不同之处在于:
基于长轮询的服务器推模型
相对于"轮询"(poll),这种长轮询方式也可以称为"拉"(pull)。因为这种方案基于 AJAX,具有以下一些优点:请求异步发出;无须安装插件;IE、Mozilla FireFox 都支持 AJAX。
长轮询 (long polling) 是在打开一条连接以后保持并等待服务器推送来数据再关闭,可以采用HTTP长轮询和XHR长轮询两种方式:
把 script 标签附加到页面上以让脚本执行。服务器会挂起连接直到有事件发生,接着把脚本内容发送回浏览器,然后重新打开另一个 script 标签来获取下一个事件,从而实现长轮询的模型。
这种方式是使用比较多的长轮询模式。
客户端打开一个到服务器端的 AJAX 请求然后等待响应;服务器端需要一些特定的功能来允许请求被挂起,只要一有事件发生,服务器端就会在挂起的请求中送回响应并关闭该请求。客户端 JavaScript 响应处理函数会在处理完服务器返回的信息后,再次发出请求,重新建立连接;如此循环。
现在浏览器已经支持CROS的跨域方式请求,因此HTTP和JSONP的长轮询方式是慢慢被淘汰的一种技术,建议采用XHR长轮询。
优点
客户端很容易实现良好的错误处理系统和超时管理,实现成本与Ajax轮询的方式类似。
缺点
需要服务器端有特殊的功能来临时挂起连接。当客户端发起的连接较多时,服务器端会长期保持多个连接,具有一定的风险。
iframe 是很早就存在的一种 HTML 标记, 通过在 HTML 页面里嵌入一个隐蔵帧,然后将这个隐蔵帧的 SRC 属性设为对一个长连接的请求,服务器端就能源源不断地往客户端输入数据。
基于流方式的服务器推模型
Comet的优缺点
1. Dojo CometD —— http://cometdproject.dojotoolkit.org/
2. DWR —— http://directwebremoting.org/dwr/index.html
3. ICEfaces —— http://www.icefaces.org/main/home/
4. GlassFish Grizzly —— https://grizzly.dev.java.net/
CometD 目前实现 Comet 比较成熟, DWR 弱一些。 ICEfaces 更商业化,实现得很成熟。 Grizzly 是基于GlassFish ,也很成熟。CometD, DWR 开源性好。
不要在同一客户端同时使用超过两个的 HTTP 长连接
我们使用 IE 下载文件时会有这样的体验,从同一个 Web 服务器下载文件,最多只能有两个文件同时被下载。第三个文件的下载会被阻塞,直到前面下载的文件下载完毕。这是因为 HTTP 1.1 规范中规定,客户端不应该与服务器端建立超过两个的 HTTP 连接, 新的连接会被阻塞。而 IE 在实现中严格遵守了这种规定。
HTTP 1.1 对两个长连接的限制,会对使用了长连接的 Web 应用带来如下现象:在客户端如果打开超过两个的 IE 窗口去访问同一个使用了长连接的 Web 服务器,第三个 IE 窗口的 HTTP 请求被前两个窗口的长连接阻塞。
所以在开发长连接的应用时, 必须注意在使用了多个 frame 的页面中,不要为每个 frame 的页面都建立一个 HTTP 长连接,这样会阻塞其它的 HTTP 请求,在设计上考虑让多个 frame 的更新共用一个长连接。
服务器端的性能和可扩展性
一般 Web 服务器会为每个连接创建一个线程,如果在大型的商业应用中使用 Comet,服务器端需要维护大量并发的长连接。在这种应用背景下,服务器端需要考虑负载均衡和集群技术;或是在服务器端为长连接作一些改进。
应用和技术的发展总是带来新的需求,从而推动新技术的发展。HTTP 1.1 与 1.0 规范有一个很大的不同:1.0 规范下服务器在处理完每个 Get/Post 请求后会关闭套接口连接; 而 1.1 规范下服务器会保持这个连接,在处理两个请求的间隔时间里,这个连接处于空闲状态。 Java 1.4 引入了支持异步 IO 的 java.nio 包。当连接处于空闲时,为这个连接分配的线程资源会返还到线程池,可以供新的连接使用;当原来处于空闲的连接的客户发出新的请求,会从线程池里分配一个线程资源处理这个请求。 这种技术在连接处于空闲的机率较高、并发连接数目很多的场景下对于降低服务器的资源负载非常有效。
但是 AJAX 的应用使请求的出现变得频繁,而 Comet 则会长时间占用一个连接,上述的服务器模型在新的应用背景下会变得非常低效,线程池里有限的线程数甚至可能会阻塞新的连接。Jetty 6 Web 服务器针对 AJAX、Comet 应用的特点进行了很多创新的改进。
控制信息与数据信息使用不同的 HTTP 连接
使用长连接时,存在一个很常见的场景:客户端网页需要关闭,而服务器端还处在读取数据的堵塞状态,客户端需要及时通知服务器端关闭数据连接。服务器在收到关闭请求后首先要从读取数据的阻塞状态唤醒,然后释放为这个客户端分配的资源,再关闭连接。
所以在设计上,我们需要使客户端的控制请求和数据请求使用不同的 HTTP 连接,才能使控制请求不会被阻塞。
在实现上,如果是基于 iframe 流方式的长连接,客户端页面需要使用两个 iframe,一个是控制帧,用于往服务器端发送控制请求,控制请求能很快收到响应,不会被堵塞;一个是显示帧,用于往服务器端发送长连接请求。如果是基于 AJAX 的长轮询方式,客户端可以异步地发出一个 XMLHttpRequest 请求,通知服务器端关闭数据连接。
在客户和服务器之间保持“心跳”信息
在浏览器与服务器之间维持一个长连接会为通信带来一些不确定性:因为数据传输是随机的,客户端不知道何时服务器才有数据传送。服务器端需要确保当客户端不再工作时,释放为这个客户端分配的资源,防止内存泄漏。因此需要一种机制使双方知道大家都在正常运行。在实现上:
WebSocket是HTML5开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。WebSocket通讯协议于2011年被IETF定为标准RFC 6455,WebSocketAPI被W3C定为标准。在WebSocket API中,浏览器和服务器只需要做一个握手的动作,然后,浏览器和服务器之间就形成了一条快速通道。两者之间就直接可以数据互相传送。
由于websocket技术要说明白的话所需要的篇幅不小,所以会在之后的单独文章中介绍下websocket的使用方式,这里就不做详细的说明了。
根据以上技术的优缺点和具体业务需要,可以选择合适的技术进行应用。