神经网络入门:
http://neuralnetworksanddeeplearning.com/chap1.html
Caffe快速入门
http://shengshuyang.github.io/A-step-by-step-guide-to-Caffe.html
CNN的反向传播
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
caffe源码学习笔记
http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/seven_first/article/category/5721883/
CNN入门基础:感知域说的很清楚
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
CNN入门
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
caffe使用基础(星空下的巫师)c++版本
https://github.com/shicai/Caffe_Manual
caffe+CNN
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
visual conNet CNN的可视化
https://github.com/jcjohnson/cnn-vis/
CNN softmax公式推导
http://zjjconan.github.io/articles/2015/04/Softmax-Regression-Matlab/
CNN人脸检测 (matConvet)
https://github.com/willard-yuan/CNN-for-Face-Image-Retrieval
CS231 CNN 课程
http://cs231n.github.io/neural-networks-3/
Visualizing and understandingConvolutionalNetworks视频
http://videolectures.net/eccv2014_zeiler_convolutional_networks/
返卷积的概念:
http://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers
https://github.com/vdumoulin/conv_arithmetic
http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
CNN的反向传播,讲的很好
http://www.cnblogs.com/tornadomeet/p/3468450.html
google深度学习笔记视频
http://www.jianshu.com/p/c2a870c19623
https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/63798118170923
caffe源码全连接层分析
http://zhangliliang.com/2014/09/15/about-caffe-code-full-connected-layer/
caffe训练CNN流程
https://frankzliu.com/experimenting-with-different-penultimate-layers-in-caffe/
CNN中的一些trick
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html
通过BN来理解bp 传播
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
http://blog.csdn.net/hjimce/article/details/50866313
CNN batch normalization Caffe和mxNet
http://shuokay.com/2016/05/28/batch-norm/
http://www.it610.com/article/5204719.htm
building-blocks-of-deep-learning
http://deepdish.io/2015/11/21/building-blocks-of-deep-learning/
CS231实现自己的卷积和BN
http://cthorey.github.io./backprop_conv/
http://cthorey.github.io./backpropagation/
caffe源码系列
http://blog.csdn.net/xizero00/article/category/5619855/1
http://blog.csdn.net/langb2014/article/details/51543388
CVPR 2015的讨论
http://www.computervisionblog.com/2015/06/deep-down-rabbit-hole-cvpr-2015-and.html
ubuntu14.04+caffe+GTX1070安装教程
https://cvdreamer.wordpress.com/2016/07/24/gtx-1070-cuda-cudnn-caffe-on-ubuntu-14-04/
http://shamangary.logdown.com/posts/773013-install-torch7-cuda-cudnn-nvidia-driver
CVPR2016 代码集合
http://shamangary.logdown.com/posts/773013-install-torch7-cuda-cudnn-nvidia-driver
DL一些瓶颈问题的讨论
https://kevinzakka.github.io/2016/09/26/applying-deep-learning/
caffe做回归
http://www.cnblogs.com/frombeijingwithlove/p/5314042.html