Python数据处理库pandas入门教程

pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。

pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观。它旨在成为在Python中进行实际数据分析的高级构建块。

入门介绍

pandas适合于许多不同类型的数据,包括:

  • 具有异构类型列的表格数据,例如SQL表格或Excel数据

  • 有序和无序(不一定是固定频率)时间序列数据。

  • 具有行列标签的任意矩阵数据(均匀类型或不同类型)

  • 任何其他形式的观测/统计数据集。

由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何获取pandas请参阅官网上的说明:pandas Installation。

通常情况下,我们可以通过pip来执行安装:

640?wx_fmt=png

或者通过conda 来安装pandas:

640?wx_fmt=png

目前(2018年2月)pandas的最新版本是v0.22.0(发布时间:2017年12月29日)。

我已经将本文的源码和测试数据放到Github上: pandas_tutorial ,读者可以前往获取。

另外,pandas常常和NumPy一起使用,本文中的源码中也会用到NumPy。

建议读者先对NumPy有一定的熟悉再来学习pandas,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程

核心数据结构

pandas最核心的就是Series和DataFrame两个数据结构。

这两种类型的数据结构对比如下:

Python数据处理库pandas入门教程_第1张图片

DataFrame可以看做是Series的容器,即:一个DataFrame中可以包含若干个Series。

注:在0.20.0版本之前,还有一个三维的数据结构,名称为Panel。这也是pandas库取名的原因:pan(el)-da(ta)-s。但这种数据结构由于很少被使用到,因此已经被废弃了。

Series

由于Series是一维结构的数据,我们可以直接通过数组来创建这种数据,像这样:

Python数据处理库pandas入门教程_第2张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第3张图片

这段输出说明如下:

  • 输出的最后一行是Series中数据的类型,这里的数据都是int64类型的。

  • 数据在第二列输出,第一列是数据的索引,在pandas中称之为Index。

我们可以分别打印出Series中的数据和索引:

Python数据处理库pandas入门教程_第4张图片

这两行代码输出如下:

Python数据处理库pandas入门教程_第5张图片

如果不指定(像上面这样),索引是[1, N-1]的形式。不过我们也可以在创建Series的时候指定索引。索引未必一定需要是整数,可以是任何类型的数据,例如字符串。例如我们以七个字母来映射七个音符。索引的目的是可以通过它来获取对应的数据,例如下面这样:

Python数据处理库pandas入门教程_第6张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第7张图片

DataFrame

下面我们来看一下DataFrame的创建。我们可以通过NumPy的接口来创建一个4x4的矩阵,以此来创建一个DataFrame,像这样:

640?wx_fmt=png

这段代码输出如下:

Python数据处理库pandas入门教程_第8张图片

从这个输出我们可以看到,默认的索引和列名都是[0, N-1]的形式。

我们可以在创建DataFrame的时候指定列名和索引,像这样:

Python数据处理库pandas入门教程_第9张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第10张图片

我们也可以直接指定列数据来创建DataFrame:

Python数据处理库pandas入门教程_第11张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第12张图片

请注意:

  • DataFrame的不同列可以是不同的数据类型

  • 如果以Series数组来创建DataFrame,每个Series将成为一行,而不是一列

例如:

Python数据处理库pandas入门教程_第13张图片

df4的输出如下:

640?wx_fmt=png

我们可以通过下面的形式给DataFrame添加或者删除列数据:

Python数据处理库pandas入门教程_第14张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第15张图片

Index对象与数据访问

pandas的Index对象包含了描述轴的元数据信息。当创建Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。可以通过下面的方式获取到DataFrame的列和行的Index对象:

640?wx_fmt=png

这两行代码输出如下:

Python数据处理库pandas入门教程_第16张图片

请注意:

  • Index并非集合,因此其中可以包含重复的数据

  • Index对象的值是不可以改变,因此可以通过它安全的访问数据

  • DataFrame提供了下面两个操作符来访问其中的数据:

  • loc:通过行和列的索引来访问数据

  • iloc:通过行和列的下标来访问数据

例如这样:

640?wx_fmt=png

第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来说,行索引和行下标刚好是一样的,所以这里都是0和1,但它们却是不同的含义),列下标为0的元素。

这两行代码输出如下:

Python数据处理库pandas入门教程_第17张图片

文件操作

pandas库提供了一系列的read_函数来读取各种格式的文件,它们如下所示:

read_csv

read_table

read_fwf

read_clipboard

read_excel

read_hdf

read_html

read_json

read_msgpack

read_pickle

read_sas

read_sql

read_stata

read_feather

读取Excel文件

注:要读取Excel文件,还需要安装另外一个库:xlrd

通过pip可以这样完成安装:

640?wx_fmt=png

安装完之后可以通过pip查看这个库的信息:

Python数据处理库pandas入门教程_第18张图片

接下来我们看一个读取Excel的简单的例子:

Python数据处理库pandas入门教程_第19张图片

这个Excel的内容如下:

Python数据处理库pandas入门教程_第20张图片

注:本文的代码和数据文件可以通过文章开头提到的Github仓库获取。

读取CSV文件

下面,我们再来看读取CSV文件的例子。

第一个CSV文件内容如下:

Python数据处理库pandas入门教程_第21张图片

读取的方式也很简单:

640?wx_fmt=png

我们再来看第2个例子,这个文件的内容如下:

Python数据处理库pandas入门教程_第22张图片

严格的来说,这并不是一个CSV文件了,因为它的数据并不是通过逗号分隔的。在这种情况下,我们可以通过指定分隔符的方式来读取这个文件,像这样:

640?wx_fmt=png

实际上,read_csv支持非常多的参数用来调整读取的参数,如下表所示:

Python数据处理库pandas入门教程_第23张图片

详细的read_csv函数说明请参见这里:pandas.read_csv

处理无效值

现实世界并非完美,我们读取到的数据常常会带有一些无效值。如果没有处理好这些无效值,将对程序造成很大的干扰。

对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。

下面我先创建一个包含无效值的数据结构。然后通过pandas.isna函数来确认哪些值是无效的:

Python数据处理库pandas入门教程_第24张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第25张图片

忽略无效值

我们可以通过pandas.DataFrame.dropna函数抛弃无效值:

640?wx_fmt=png

注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。如果想要直接更改数据本身,可以在调用这个函数的时候传递参数 inplace = True。

对于原先的结构,当无效值全部被抛弃之后,将不再是一个有效的DataFrame,因此这行代码输出如下:

640?wx_fmt=png

我们也可以选择抛弃整列都是无效值的那一列:

640?wx_fmt=png

注:axis=1表示列的轴。how可以取值'any'或者'all',默认是前者。

这行代码输出如下:

Python数据处理库pandas入门教程_第26张图片

替换无效值

我们也可以通过fillna函数将无效值替换成为有效值。像这样:

640?wx_fmt=png

这段代码输出如下:

Python数据处理库pandas入门教程_第27张图片

将无效值全部替换成同样的数据可能意义不大,因此我们可以指定不同的数据来进行填充。为了便于操作,在填充之前,我们可以先通过rename方法修改行和列的名称:

Python数据处理库pandas入门教程_第28张图片

这段代码输出如下:

Python数据处理库pandas入门教程_第29张图片

处理字符串

数据中常常牵涉到字符串的处理,接下来我们就看看pandas对于字符串操作。

Series的str字段包含了一系列的函数用来处理字符串。并且,这些函数会自动处理无效值。

下面是一些实例,在第一组数据中,我们故意设置了一些包含空格字符串:

Python数据处理库pandas入门教程_第30张图片

在这个实例中我们看到了对于字符串strip的处理以及判断字符串本身是否是数字,这段代码输出如下:

Python数据处理库pandas入门教程_第31张图片

下面是另外一些示例,展示了对于字符串大写,小写以及字符串长度的处理:

Python数据处理库pandas入门教程_第32张图片

该段代码输出如下:

Python数据处理库pandas入门教程_第33张图片

结束语

本文是pandas的入门教程,因此我们只介绍了最基本的操作。更深入的内容,以后有机会我们再来一起学习。

读者也可以根据下面的链接获取更多的知识。

参考资料与推荐读物

  • pandas官方网站

  • Python for Data Analysis

  • Pandas Tutorial: Data analysis with Python: Part 1

https://pandas.pydata.org/

https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662/

https://www.dataquest.io/blog/pandas-python-tutorial/

推荐个良心的python实战圈

开通一月已有1100+学员加入,国庆后将涨价至70元/年,目前还是50/年

Python数据处理库pandas入门教程_第34张图片

这个python的实战圈有什么?

【基础】0基础入门python,24小时有人快速解答问题;

【提高】40多个项目实战,有基础的可以从真实场景中学习python;

【直播】不定期直播项目案例讲解,手把手教你如何分析项目;

【分享】优质python学习资料分享,让你在最短时间获得有价值的学习资源;圈友优质资料或学习分享,会不时给予赞赏支持,希望每个优质圈友既能赚回加入费用,也能快速成长,并享受分享与帮助他人的乐趣。

【人脉】收获一群志同道合的朋友,并且都是python从业者

【价格】本着布道思想,只需 50元 加入一个能保证学习效果的良心圈子

你可能感兴趣的:(Python数据处理库pandas入门教程)