分析数据相关性的三大相关系数

    需要一种方法评价两组数据之间的相关性,有皮尔森(pearson)相关系数,斯皮尔曼(spearman)相关系数和肯德尔(kendall)相关系数。在这三大相关系数中,spearman和kendall属于等级相关系数亦称为“秩相关系数”,是反映等级相关程度的统计分析指标。对于pearson相关系数。

    首先放上公式:

分析数据相关性的三大相关系数_第1张图片


     公式定义为: 两个连续变量(X,Y)的pearson相关性系数(Px,y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX,σY)。系数的取值总是在-1.0到1.0之间,接近0的变量被成为无相关性,接近1或者-1被称为具有强相关性。

    相关系数的绝对值越大,相关性越强:相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

    皮尔森相关系数是衡量线性关联性的程度,p的一个几何解释是其代表两个变量的取值根据均值集中后构成的向量之间夹角的余弦。

你可能感兴趣的:(分析数据相关性的三大相关系数)