lightgbm python基本使用 --mac下操作

好几天没有更新博客,最近指标压力大,没去摸索算法,今天写这个博客算是忙里偷闲吧,lightgbm的基本使用,python接口,这个工具微软开源的,号称比xgboost快,具体没怎么对比,先看看如何使用的.


安装编译,其中第一步和第二步以前安装xgboost时候安装过,可以直接跳过

 
    
  1. brew install cmake
  2. brew install gcc --without-multilib
  3. git clone --recursive https://github.com/Microsoft/LightGBM ; cd LightGBM
  4. mkdir build ; cd build
  5. cmake ..
  6. make -j

安装lightgbm  python包

 
    
  1. cd python-packages
  2. sudo python3 setup.py install


代码训练,跟xgboost类似,数据是lightgbm自带的数据:

 
    
  1. import json
  2. import lightgbm as lgb
  3. import pandas as pd
  4. from sklearn.metrics import roc_auc_score
  5. path="/Users/shuubiasahi/Documents/githup/LightGBM/examples/regression/"
  6. print("load data")
  7. df_train=pd.read_csv(path+"regression.train",header=None,sep='\t')
  8. df_test=pd.read_csv(path+"regression.train",header=None,sep='\t')
  9. y_train = df_train[0].values
  10. y_test = df_test[0].values
  11. X_train = df_train.drop(0, axis=1).values
  12. X_test = df_test.drop(0, axis=1).values
  13. # create dataset for lightgbm
  14. lgb_train = lgb.Dataset(X_train, y_train)
  15. lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
  16. # specify your configurations as a dict
  17. params = {
  18. 'task': 'train',
  19. 'boosting_type': 'gbdt',
  20. 'objective': 'binary',
  21. 'metric': {'l2', 'auc'},
  22. 'num_leaves': 31,
  23. 'learning_rate': 0.05,
  24. 'feature_fraction': 0.9,
  25. 'bagging_fraction': 0.8,
  26. 'bagging_freq': 5,
  27. 'verbose': 0
  28. }
  29. print('Start training...')
  30. # train
  31. gbm = lgb.train(params,
  32. lgb_train,
  33. num_boost_round=20,
  34. valid_sets=lgb_eval,
  35. early_stopping_rounds=5)
  36. print('Save model...')
  37. # save model to file
  38. gbm.save_model('lightgbm/model.txt')
  39. print('Start predicting...')
  40. # predict
  41. y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
  42. # eval
  43. print(y_pred)
  44. print('The roc of prediction is:', roc_auc_score(y_test, y_pred) )
  45. print('Dump model to JSON...')
  46. # dump model to json (and save to file)
  47. model_json = gbm.dump_model()
  48. with open('lightgbm/model.json', 'w+') as f:
  49. json.dump(model_json, f, indent=4)
  50. print('Feature names:', gbm.feature_name())
  51. print('Calculate feature importances...')
  52. # feature importances
  53. print('Feature importances:', list(gbm.feature_importance()))


结果如下:

/anaconda/bin/python3 /Users/shuubiasahi/Documents/python/lgb.py
load data
Start training...
[1] valid_0's auc: 0.768095 valid_0's l2: 0.24445
Train until valid scores didn't improve in 5 rounds.
[2] valid_0's auc: 0.780194 valid_0's l2: 0.24024
[3] valid_0's auc: 0.793988 valid_0's l2: 0.236395
[4] valid_0's auc: 0.799031 valid_0's l2: 0.231919
[5] valid_0's auc: 0.799646 valid_0's l2: 0.227804
[6] valid_0's auc: 0.805888 valid_0's l2: 0.224428
[7] valid_0's auc: 0.810546 valid_0's l2: 0.221569
[8] valid_0's auc: 0.812721 valid_0's l2: 0.218367
[9] valid_0's auc: 0.814419 valid_0's l2: 0.215412
[10] valid_0's auc: 0.815477 valid_0's l2: 0.212688
[11] valid_0's auc: 0.816437 valid_0's l2: 0.209996
[12] valid_0's auc: 0.819061 valid_0's l2: 0.207497
[13] valid_0's auc: 0.819953 valid_0's l2: 0.205227
[14] valid_0's auc: 0.82138 valid_0's l2: 0.203252
[15] valid_0's auc: 0.822767 valid_0's l2: 0.201168
[16] valid_0's auc: 0.825256 valid_0's l2: 0.199154
[17] valid_0's auc: 0.82648 valid_0's l2: 0.197123
[18] valid_0's auc: 0.829691 valid_0's l2: 0.19538
[19] valid_0's auc: 0.830232 valid_0's l2: 0.193633
[20] valid_0's auc: 0.831021 valid_0's l2: 0.191994
Save model...
Start predicting...
[ 0.63631928  0.731689    0.73191171 ...,  0.26398355  0.43711743
  0.45558644]
The roc of prediction is: 0.831021275808
Dump model to JSON...
Feature names: ['Column_0', 'Column_1', 'Column_2', 'Column_3', 'Column_4', 'Column_5', 'Column_6', 'Column_7', 'Column_8', 'Column_9', 'Column_10', 'Column_11', 'Column_12', 'Column_13', 'Column_14', 'Column_15', 'Column_16', 'Column_17', 'Column_18', 'Column_19', 'Column_20', 'Column_21', 'Column_22', 'Column_23', 'Column_24', 'Column_25', 'Column_26', 'Column_27']
Calculate feature importances...
Feature importances: [26, 10, 2, 34, 8, 53, 9, 0, 1, 31, 5, 6, 1, 27, 8, 4, 2, 7, 4, 7, 1, 24, 63, 3, 53, 90, 56, 65]



官方推荐用配置的形式训练模型,编译之后回生成lightgbm可执行文件,模型训练,下面也演示一下


先看看train.conf配置:

 
    
  1. # 配置目标是用于训练
  2. task = train
  3. # 训练方式
  4. boosting_type = gbdt
  5. #目标 二分类
  6. objective = binary
  7. # 损失函数
  8. metric = binary_logloss,auc
  9. # frequence for metric output
  10. metric_freq = 1
  11. # true if need output metric for training data, alias: tranining_metric, train_metric
  12. is_training_metric = true
  13. # 特征最大分割
  14. max_bin = 255
  15. #训练数据地址
  16. data = /Users/shuubiasahi/Documents/githup/LightGBM/examples/binary_classification/binary.train
  17. #测试数据
  18. #valid_data = binary.test
  19. # 树的棵树
  20. num_trees = 100
  21. # 学习率
  22. learning_rate = 0.1
  23. # number of leaves for one tree, alias: num_leaf
  24. num_leaves = 63
  25. tree_learner = serial
  26. # 最大线程个数
  27. # num_threads = 8
  28. # feature sub-sample, will random select 80% feature to train on each iteration
  29. # alias: sub_feature
  30. feature_fraction = 0.8
  31. # Support bagging (data sub-sample), will perform bagging every 5 iterations
  32. bagging_freq = 5
  33. # Bagging farction, will random select 80% data on bagging
  34. # alias: sub_row
  35. bagging_fraction = 0.8
  36. # minimal number data for one leaf, use this to deal with over-fit
  37. # alias : min_data_per_leaf, min_data
  38. min_data_in_leaf = 50
  39. # minial sum hessians for one leaf, use this to deal with over-fit
  40. min_sum_hessian_in_leaf = 5.0
  41. # save memory and faster speed for sparse feature, alias: is_sparse
  42. is_enable_sparse = true
  43. # when data is bigger than memory size, set this to true. otherwise set false will have faster speed
  44. # alias: two_round_loading, two_round
  45. use_two_round_loading = false
  46. # true if need to save data to binary file and application will auto load data from binary file next time
  47. # alias: is_save_binary, save_binary
  48. is_save_binary_file = false
  49. # 模型输出文件
  50. output_model = /Users/shuubiasahi/Documents/githup/LightGBM/examples/binary_classification/LightGBM_model.txt
  51. machine_list_file = /Users/shuubiasahi/Documents/githup/LightGBM/examples/binary_classification/LightGBM_model.txt/mlist.txt



模型训练:

 
    
  1. ./lightgbm config=train.conf


模型中间结果演示:


[LightGBM] [Info] Finished loading parameters

[LightGBM] [Info] Loading weights...

[LightGBM] [Info] Finished loading data in 0.036442 seconds

[LightGBM] [Info] Number of positive: 3716, number of negative: 3284

[LightGBM] [Info] Total Bins 6143

[LightGBM] [Info] Number of data: 7000, number of used features: 28

[LightGBM] [Info] Finished initializing training

[LightGBM] [Info] Started training...

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:1, training auc : 0.787798

[LightGBM] [Info] Iteration:1, training binary_logloss : 0.667949

[LightGBM] [Info] 0.013430 seconds elapsed, finished iteration 1

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:2, training auc : 0.805675

[LightGBM] [Info] Iteration:2, training binary_logloss : 0.649776

[LightGBM] [Info] 0.026941 seconds elapsed, finished iteration 2

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:3, training auc : 0.823995

[LightGBM] [Info] Iteration:3, training binary_logloss : 0.634349

[LightGBM] [Info] 0.043322 seconds elapsed, finished iteration 3

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=9

[LightGBM] [Info] Iteration:4, training auc : 0.829869

[LightGBM] [Info] Iteration:4, training binary_logloss : 0.620079

[LightGBM] [Info] 0.057615 seconds elapsed, finished iteration 4

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:5, training auc : 0.841468

[LightGBM] [Info] Iteration:5, training binary_logloss : 0.604578

[LightGBM] [Info] 0.071709 seconds elapsed, finished iteration 5

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=10

[LightGBM] [Info] Iteration:6, training auc : 0.850717

[LightGBM] [Info] Iteration:6, training binary_logloss : 0.591481

[LightGBM] [Info] 0.086316 seconds elapsed, finished iteration 6

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:7, training auc : 0.856189

[LightGBM] [Info] Iteration:7, training binary_logloss : 0.580923

[LightGBM] [Info] 0.099731 seconds elapsed, finished iteration 7

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:8, training auc : 0.860896

[LightGBM] [Info] Iteration:8, training binary_logloss : 0.570068

[LightGBM] [Info] 0.114074 seconds elapsed, finished iteration 8

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:9, training auc : 0.864321

[LightGBM] [Info] Iteration:9, training binary_logloss : 0.559213

[LightGBM] [Info] 0.128178 seconds elapsed, finished iteration 9

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=10

[LightGBM] [Info] Iteration:10, training auc : 0.865847

[LightGBM] [Info] Iteration:10, training binary_logloss : 0.549887

[LightGBM] [Info] 0.142092 seconds elapsed, finished iteration 10

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:11, training auc : 0.869032

[LightGBM] [Info] Iteration:11, training binary_logloss : 0.541422

[LightGBM] [Info] 0.156388 seconds elapsed, finished iteration 11

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:12, training auc : 0.871975

[LightGBM] [Info] Iteration:12, training binary_logloss : 0.532812

[LightGBM] [Info] 0.170416 seconds elapsed, finished iteration 12

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:13, training auc : 0.875643

[LightGBM] [Info] Iteration:13, training binary_logloss : 0.524978

[LightGBM] [Info] 0.185625 seconds elapsed, finished iteration 13

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:14, training auc : 0.879003

[LightGBM] [Info] Iteration:14, training binary_logloss : 0.517616

[LightGBM] [Info] 0.199136 seconds elapsed, finished iteration 14

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=10

[LightGBM] [Info] Iteration:15, training auc : 0.88134

[LightGBM] [Info] Iteration:15, training binary_logloss : 0.510784

[LightGBM] [Info] 0.213376 seconds elapsed, finished iteration 15

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:16, training auc : 0.885158

[LightGBM] [Info] Iteration:16, training binary_logloss : 0.503586

[LightGBM] [Info] 0.227964 seconds elapsed, finished iteration 16

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:17, training auc : 0.887269

[LightGBM] [Info] Iteration:17, training binary_logloss : 0.497071

[LightGBM] [Info] 0.241420 seconds elapsed, finished iteration 17

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:18, training auc : 0.891545

[LightGBM] [Info] Iteration:18, training binary_logloss : 0.491137

[LightGBM] [Info] 0.255633 seconds elapsed, finished iteration 18

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:19, training auc : 0.894663

[LightGBM] [Info] Iteration:19, training binary_logloss : 0.485116

[LightGBM] [Info] 0.270698 seconds elapsed, finished iteration 19

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:20, training auc : 0.897144

[LightGBM] [Info] Iteration:20, training binary_logloss : 0.479071

[LightGBM] [Info] 0.283444 seconds elapsed, finished iteration 20

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:21, training auc : 0.901085

[LightGBM] [Info] Iteration:21, training binary_logloss : 0.47325

[LightGBM] [Info] 0.297565 seconds elapsed, finished iteration 21

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:22, training auc : 0.904153

[LightGBM] [Info] Iteration:22, training binary_logloss : 0.468264

[LightGBM] [Info] 0.311035 seconds elapsed, finished iteration 22

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:23, training auc : 0.907717

[LightGBM] [Info] Iteration:23, training binary_logloss : 0.462459

[LightGBM] [Info] 0.324005 seconds elapsed, finished iteration 23

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=10

[LightGBM] [Info] Iteration:24, training auc : 0.91095

[LightGBM] [Info] Iteration:24, training binary_logloss : 0.457094

[LightGBM] [Info] 0.338215 seconds elapsed, finished iteration 24

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:25, training auc : 0.91396

[LightGBM] [Info] Iteration:25, training binary_logloss : 0.452346

[LightGBM] [Info] 0.351690 seconds elapsed, finished iteration 25

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:26, training auc : 0.916548

[LightGBM] [Info] Iteration:26, training binary_logloss : 0.447526

[LightGBM] [Info] 0.365339 seconds elapsed, finished iteration 26

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:27, training auc : 0.918787

[LightGBM] [Info] Iteration:27, training binary_logloss : 0.442881

[LightGBM] [Info] 0.379938 seconds elapsed, finished iteration 27

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:28, training auc : 0.920954

[LightGBM] [Info] Iteration:28, training binary_logloss : 0.437881

[LightGBM] [Info] 0.394119 seconds elapsed, finished iteration 28

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:29, training auc : 0.92347

[LightGBM] [Info] Iteration:29, training binary_logloss : 0.433232

[LightGBM] [Info] 0.407316 seconds elapsed, finished iteration 29

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:30, training auc : 0.926489

[LightGBM] [Info] Iteration:30, training binary_logloss : 0.428527

[LightGBM] [Info] 0.422244 seconds elapsed, finished iteration 30

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:31, training auc : 0.929286

[LightGBM] [Info] Iteration:31, training binary_logloss : 0.4238

[LightGBM] [Info] 0.436830 seconds elapsed, finished iteration 31

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:32, training auc : 0.931723

[LightGBM] [Info] Iteration:32, training binary_logloss : 0.418874

[LightGBM] [Info] 0.449980 seconds elapsed, finished iteration 32

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:33, training auc : 0.934119

[LightGBM] [Info] Iteration:33, training binary_logloss : 0.414036

[LightGBM] [Info] 0.464594 seconds elapsed, finished iteration 33

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:34, training auc : 0.935877

[LightGBM] [Info] Iteration:34, training binary_logloss : 0.409539

[LightGBM] [Info] 0.478952 seconds elapsed, finished iteration 34

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:35, training auc : 0.938338

[LightGBM] [Info] Iteration:35, training binary_logloss : 0.405378

[LightGBM] [Info] 0.492851 seconds elapsed, finished iteration 35

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:36, training auc : 0.941145

[LightGBM] [Info] Iteration:36, training binary_logloss : 0.40095

[LightGBM] [Info] 0.507314 seconds elapsed, finished iteration 36

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:37, training auc : 0.943501

[LightGBM] [Info] Iteration:37, training binary_logloss : 0.396802

[LightGBM] [Info] 0.520034 seconds elapsed, finished iteration 37

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:38, training auc : 0.946192

[LightGBM] [Info] Iteration:38, training binary_logloss : 0.392725

[LightGBM] [Info] 0.532794 seconds elapsed, finished iteration 38

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:39, training auc : 0.948446

[LightGBM] [Info] Iteration:39, training binary_logloss : 0.388764

[LightGBM] [Info] 0.547331 seconds elapsed, finished iteration 39

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:40, training auc : 0.950573

[LightGBM] [Info] Iteration:40, training binary_logloss : 0.384881

[LightGBM] [Info] 0.561565 seconds elapsed, finished iteration 40

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:41, training auc : 0.952163

[LightGBM] [Info] Iteration:41, training binary_logloss : 0.381236

[LightGBM] [Info] 0.574713 seconds elapsed, finished iteration 41

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:42, training auc : 0.95388

[LightGBM] [Info] Iteration:42, training binary_logloss : 0.377978

[LightGBM] [Info] 0.590710 seconds elapsed, finished iteration 42

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:43, training auc : 0.956048

[LightGBM] [Info] Iteration:43, training binary_logloss : 0.374032

[LightGBM] [Info] 0.603500 seconds elapsed, finished iteration 43

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:44, training auc : 0.957686

[LightGBM] [Info] Iteration:44, training binary_logloss : 0.37035

[LightGBM] [Info] 0.617002 seconds elapsed, finished iteration 44

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:45, training auc : 0.959158

[LightGBM] [Info] Iteration:45, training binary_logloss : 0.36696

[LightGBM] [Info] 0.631168 seconds elapsed, finished iteration 45

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:46, training auc : 0.960496

[LightGBM] [Info] Iteration:46, training binary_logloss : 0.363445

[LightGBM] [Info] 0.644741 seconds elapsed, finished iteration 46

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:47, training auc : 0.96195

[LightGBM] [Info] Iteration:47, training binary_logloss : 0.359715

[LightGBM] [Info] 0.657944 seconds elapsed, finished iteration 47

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=22

[LightGBM] [Info] Iteration:48, training auc : 0.963024

[LightGBM] [Info] Iteration:48, training binary_logloss : 0.356493

[LightGBM] [Info] 0.672357 seconds elapsed, finished iteration 48

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:49, training auc : 0.964386

[LightGBM] [Info] Iteration:49, training binary_logloss : 0.353024

[LightGBM] [Info] 0.685231 seconds elapsed, finished iteration 49

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:50, training auc : 0.965478

[LightGBM] [Info] Iteration:50, training binary_logloss : 0.350048

[LightGBM] [Info] 0.697683 seconds elapsed, finished iteration 50

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:51, training auc : 0.967142

[LightGBM] [Info] Iteration:51, training binary_logloss : 0.346614

[LightGBM] [Info] 0.712489 seconds elapsed, finished iteration 51

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=11

[LightGBM] [Info] Iteration:52, training auc : 0.968305

[LightGBM] [Info] Iteration:52, training binary_logloss : 0.343021

[LightGBM] [Info] 0.725911 seconds elapsed, finished iteration 52

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:53, training auc : 0.969855

[LightGBM] [Info] Iteration:53, training binary_logloss : 0.33965

[LightGBM] [Info] 0.738662 seconds elapsed, finished iteration 53

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:54, training auc : 0.97138

[LightGBM] [Info] Iteration:54, training binary_logloss : 0.336329

[LightGBM] [Info] 0.753535 seconds elapsed, finished iteration 54

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:55, training auc : 0.9726

[LightGBM] [Info] Iteration:55, training binary_logloss : 0.333113

[LightGBM] [Info] 0.767232 seconds elapsed, finished iteration 55

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:56, training auc : 0.973942

[LightGBM] [Info] Iteration:56, training binary_logloss : 0.329822

[LightGBM] [Info] 0.780910 seconds elapsed, finished iteration 56

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:57, training auc : 0.975169

[LightGBM] [Info] Iteration:57, training binary_logloss : 0.326521

[LightGBM] [Info] 0.794841 seconds elapsed, finished iteration 57

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:58, training auc : 0.976082

[LightGBM] [Info] Iteration:58, training binary_logloss : 0.323446

[LightGBM] [Info] 0.809004 seconds elapsed, finished iteration 58

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:59, training auc : 0.977198

[LightGBM] [Info] Iteration:59, training binary_logloss : 0.320572

[LightGBM] [Info] 0.822078 seconds elapsed, finished iteration 59

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:60, training auc : 0.978064

[LightGBM] [Info] Iteration:60, training binary_logloss : 0.317873

[LightGBM] [Info] 0.836867 seconds elapsed, finished iteration 60

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:61, training auc : 0.978937

[LightGBM] [Info] Iteration:61, training binary_logloss : 0.315203

[LightGBM] [Info] 0.850909 seconds elapsed, finished iteration 61

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=20

[LightGBM] [Info] Iteration:62, training auc : 0.979873

[LightGBM] [Info] Iteration:62, training binary_logloss : 0.312697

[LightGBM] [Info] 0.863607 seconds elapsed, finished iteration 62

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:63, training auc : 0.98087

[LightGBM] [Info] Iteration:63, training binary_logloss : 0.309975

[LightGBM] [Info] 0.877317 seconds elapsed, finished iteration 63

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=12

[LightGBM] [Info] Iteration:64, training auc : 0.981946

[LightGBM] [Info] Iteration:64, training binary_logloss : 0.306929

[LightGBM] [Info] 0.890285 seconds elapsed, finished iteration 64

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:65, training auc : 0.982631

[LightGBM] [Info] Iteration:65, training binary_logloss : 0.304005

[LightGBM] [Info] 0.903545 seconds elapsed, finished iteration 65

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:66, training auc : 0.983237

[LightGBM] [Info] Iteration:66, training binary_logloss : 0.301214

[LightGBM] [Info] 0.917765 seconds elapsed, finished iteration 66

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=22

[LightGBM] [Info] Iteration:67, training auc : 0.983893

[LightGBM] [Info] Iteration:67, training binary_logloss : 0.298476

[LightGBM] [Info] 0.931893 seconds elapsed, finished iteration 67

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=19

[LightGBM] [Info] Iteration:68, training auc : 0.984635

[LightGBM] [Info] Iteration:68, training binary_logloss : 0.296003

[LightGBM] [Info] 0.945163 seconds elapsed, finished iteration 68

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=19

[LightGBM] [Info] Iteration:69, training auc : 0.985368

[LightGBM] [Info] Iteration:69, training binary_logloss : 0.293345

[LightGBM] [Info] 0.960573 seconds elapsed, finished iteration 69

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=24

[LightGBM] [Info] Iteration:70, training auc : 0.986053

[LightGBM] [Info] Iteration:70, training binary_logloss : 0.290797

[LightGBM] [Info] 0.974280 seconds elapsed, finished iteration 70

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=22

[LightGBM] [Info] Iteration:71, training auc : 0.986643

[LightGBM] [Info] Iteration:71, training binary_logloss : 0.288291

[LightGBM] [Info] 0.987650 seconds elapsed, finished iteration 71

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:72, training auc : 0.987332

[LightGBM] [Info] Iteration:72, training binary_logloss : 0.28575

[LightGBM] [Info] 1.001018 seconds elapsed, finished iteration 72

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:73, training auc : 0.988057

[LightGBM] [Info] Iteration:73, training binary_logloss : 0.283294

[LightGBM] [Info] 1.014847 seconds elapsed, finished iteration 73

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=26

[LightGBM] [Info] Iteration:74, training auc : 0.988452

[LightGBM] [Info] Iteration:74, training binary_logloss : 0.280918

[LightGBM] [Info] 1.028188 seconds elapsed, finished iteration 74

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:75, training auc : 0.989083

[LightGBM] [Info] Iteration:75, training binary_logloss : 0.27835

[LightGBM] [Info] 1.042464 seconds elapsed, finished iteration 75

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=20

[LightGBM] [Info] Iteration:76, training auc : 0.989593

[LightGBM] [Info] Iteration:76, training binary_logloss : 0.275878

[LightGBM] [Info] 1.056295 seconds elapsed, finished iteration 76

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=20

[LightGBM] [Info] Iteration:77, training auc : 0.990151

[LightGBM] [Info] Iteration:77, training binary_logloss : 0.273444

[LightGBM] [Info] 1.069793 seconds elapsed, finished iteration 77

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:78, training auc : 0.990569

[LightGBM] [Info] Iteration:78, training binary_logloss : 0.271126

[LightGBM] [Info] 1.083776 seconds elapsed, finished iteration 78

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:79, training auc : 0.990993

[LightGBM] [Info] Iteration:79, training binary_logloss : 0.268766

[LightGBM] [Info] 1.097278 seconds elapsed, finished iteration 79

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=21

[LightGBM] [Info] Iteration:80, training auc : 0.99142

[LightGBM] [Info] Iteration:80, training binary_logloss : 0.266402

[LightGBM] [Info] 1.110613 seconds elapsed, finished iteration 80

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:81, training auc : 0.991887

[LightGBM] [Info] Iteration:81, training binary_logloss : 0.264169

[LightGBM] [Info] 1.125377 seconds elapsed, finished iteration 81

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=20

[LightGBM] [Info] Iteration:82, training auc : 0.99234

[LightGBM] [Info] Iteration:82, training binary_logloss : 0.261749

[LightGBM] [Info] 1.138764 seconds elapsed, finished iteration 82

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:83, training auc : 0.992836

[LightGBM] [Info] Iteration:83, training binary_logloss : 0.259547

[LightGBM] [Info] 1.151774 seconds elapsed, finished iteration 83

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:84, training auc : 0.993185

[LightGBM] [Info] Iteration:84, training binary_logloss : 0.257249

[LightGBM] [Info] 1.166518 seconds elapsed, finished iteration 84

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:85, training auc : 0.993482

[LightGBM] [Info] Iteration:85, training binary_logloss : 0.254958

[LightGBM] [Info] 1.180124 seconds elapsed, finished iteration 85

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:86, training auc : 0.993851

[LightGBM] [Info] Iteration:86, training binary_logloss : 0.252758

[LightGBM] [Info] 1.193683 seconds elapsed, finished iteration 86

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:87, training auc : 0.994185

[LightGBM] [Info] Iteration:87, training binary_logloss : 0.25062

[LightGBM] [Info] 1.208783 seconds elapsed, finished iteration 87

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=13

[LightGBM] [Info] Iteration:88, training auc : 0.994543

[LightGBM] [Info] Iteration:88, training binary_logloss : 0.248303

[LightGBM] [Info] 1.222327 seconds elapsed, finished iteration 88

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:89, training auc : 0.994812

[LightGBM] [Info] Iteration:89, training binary_logloss : 0.246079

[LightGBM] [Info] 1.235147 seconds elapsed, finished iteration 89

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=19

[LightGBM] [Info] Iteration:90, training auc : 0.995107

[LightGBM] [Info] Iteration:90, training binary_logloss : 0.243942

[LightGBM] [Info] 1.249424 seconds elapsed, finished iteration 90

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=14

[LightGBM] [Info] Iteration:91, training auc : 0.995351

[LightGBM] [Info] Iteration:91, training binary_logloss : 0.241682

[LightGBM] [Info] 1.262943 seconds elapsed, finished iteration 91

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:92, training auc : 0.995663

[LightGBM] [Info] Iteration:92, training binary_logloss : 0.239551

[LightGBM] [Info] 1.276080 seconds elapsed, finished iteration 92

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:93, training auc : 0.995831

[LightGBM] [Info] Iteration:93, training binary_logloss : 0.237387

[LightGBM] [Info] 1.290925 seconds elapsed, finished iteration 93

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=17

[LightGBM] [Info] Iteration:94, training auc : 0.996133

[LightGBM] [Info] Iteration:94, training binary_logloss : 0.23537

[LightGBM] [Info] 1.303520 seconds elapsed, finished iteration 94

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=18

[LightGBM] [Info] Iteration:95, training auc : 0.996366

[LightGBM] [Info] Iteration:95, training binary_logloss : 0.233472

[LightGBM] [Info] 1.316507 seconds elapsed, finished iteration 95

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=22

[LightGBM] [Info] Iteration:96, training auc : 0.996716

[LightGBM] [Info] Iteration:96, training binary_logloss : 0.23139

[LightGBM] [Info] 1.330392 seconds elapsed, finished iteration 96

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:97, training auc : 0.996983

[LightGBM] [Info] Iteration:97, training binary_logloss : 0.229236

[LightGBM] [Info] 1.344879 seconds elapsed, finished iteration 97

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=15

[LightGBM] [Info] Iteration:98, training auc : 0.997187

[LightGBM] [Info] Iteration:98, training binary_logloss : 0.227213

[LightGBM] [Info] 1.357977 seconds elapsed, finished iteration 98

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:99, training auc : 0.997419

[LightGBM] [Info] Iteration:99, training binary_logloss : 0.225164

[LightGBM] [Info] 1.372758 seconds elapsed, finished iteration 99

[LightGBM] [Info] Trained a tree with leaves=63 and max_depth=16

[LightGBM] [Info] Iteration:100, training auc : 0.997572

[LightGBM] [Info] Iteration:100, training binary_logloss : 0.223258

[LightGBM] [Info] 1.385942 seconds elapsed, finished iteration 100

[LightGBM] [Info] Finished training











你可能感兴趣的:(python编程,机器学习)