import cv2
import time
save_path = './face/'
face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('./cascades/haarcascade_eye.xml')
camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头
# 判断视频是否打开
if (camera.isOpened()):
print('Open')
else:
print('摄像头未打开')
# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))
fps = 5 # 帧率
pre_frame = None # 总是取视频流前一帧做为背景相对下一帧进行比较
i = 0
while True:
start = time.time()
grabbed, frame_lwpCV = camera.read() # 读取视频流
gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图
if not grabbed:
break
end = time.time()
# 人脸检测部分
faces = face_cascade.detectMultiScale(gray_lwpCV, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame_lwpCV, (x, y), (x + w, y + h), (255, 0, 0), 2)
roi_gray_lwpCV = gray_lwpCV[y:y + h / 2, x:x + w] # 检出人脸区域后,取上半部分,因为眼睛在上边啊,这样精度会高一些
roi_frame_lwpCV = frame_lwpCV[y:y + h / 2, x:x + w]
cv2.imwrite(save_path + str(i) + '.jpg', frame_lwpCV[y:y + h, x:x + w]) # 将检测到的人脸写入文件
i += 1
eyes = eye_cascade.detectMultiScale(roi_gray_lwpCV, 1.03, 5) # 在人脸区域继续检测眼睛
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_frame_lwpCV, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
cv2.imshow('lwpCVWindow', frame_lwpCV)
# 运动检测部分
seconds = end - start
if seconds < 1.0 / fps:
time.sleep(1.0 / fps - seconds)
gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
# 用高斯滤波进行模糊处理,进行处理的原因:每个输入的视频都会因自然震动、光照变化或者摄像头本身等原因而产生噪声。对噪声进行平滑是为了避免在运动和跟踪时将其检测出来。
gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)
# 在完成对帧的灰度转换和平滑后,就可计算与背景帧的差异,并得到一个差分图(different map)。还需要应用阈值来得到一幅黑白图像,并通过下面代码来膨胀(dilate)图像,从而对孔(hole)和缺陷(imperfection)进行归一化处理
if pre_frame is None:
pre_frame = gray_lwpCV
else:
img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
if cv2.contourArea(c) < 1000: # 设置敏感度
continue
else:
print("咦,有什么东西在动0.0")
break
pre_frame = gray_lwpCV
key = cv2.waitKey(1) & 0xFF
# 按'q'健退出循环
if key == ord('q'):
break
# When everything done, release the capture
camera.release()
cv2.destroyAllWindows()
本文运动检测部分参考自:这里作者用树莓派在家里卫生间检测有人进入,然后播放音乐,哈哈哈啊哈,太好玩了