原 PyTorch学习之六个学习率调整策略.图示

原 PyTorch学习之六个学习率调整策略.图示_第1张图片

How to adjust Learning Rate

  • torch.optim.lr_scheduler.LambdaLR
  • torch.optim.lr_scheduler.StepLR
  • torch.optim.lr_scheduler.MultiStepLR
  • torch.optim.lr_scheduler.ExponentialLR
  • torch.optim.lr_sheduler.CosineAnneaingLR
  • torch.optim.lr_scheduler.ReduceLROnPlatea
  • torch.optim.lr_scheduler.CyclicLR

参考:https://www.jianshu.com/p/a20d5a7ed6f3

PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是

    a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
    b. 自适应调整:自适应调整学习率 ReduceLROnPlateau。
    c. 自定义调整:自定义调整学习率 LambdaLR。

1 等间隔调整学习率 StepLR

等间隔调整学习率,调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

参数:

    step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma。
    gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
    last_epoch(int)- 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

 2 按需调整学习率 MultiStepLR

按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数:

    milestones(list)- 一个 list,每一个元素代表何时调整学习率, list 元素必须是递增的。如 milestones=[30,80,120]
    gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

3 指数衰减调整学习率 ExponentialLR

按指数衰减调整学习率,调整公式: lr=lr∗gamma∗∗epoch

lr=lr∗gamma∗∗epoch

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

参数:

    gamma- 学习率调整倍数的底,指数为 epoch,即 gamma**epoch

原 PyTorch学习之六个学习率调整策略.图示_第2张图片

4 余弦退火调整学习率 CosineAnnealingLR:https://arxiv.org/pdf/1704.00109.pdf

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2∗Tmax为周期,在一个周期内先下降,后上升。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数:

    T_max(int)- 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率。
    eta_min(float)- 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

学习率调整公式为:
在这里插入图片描述
可以看出是以初始学习率为最大学习率,以2*Tmax为周期,在一个周期内先下降,后上升。

实例:T_max = 200, 初始学习率 = 0.001, eta_min = 0
原 PyTorch学习之六个学习率调整策略.图示_第3张图片

原 PyTorch学习之六个学习率调整策略.图示_第4张图片原 PyTorch学习之六个学习率调整策略.图示_第5张图片原 PyTorch学习之六个学习率调整策略.图示_第6张图片

5 自适应调整学习率 ReduceLROnPlateau

当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。
例如,当验证集的 loss 不再下降时,进行学习率调整;或者监测验证集的 accuracy,当accuracy 不再上升时,则调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

参数:

    mode(str)- 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss), max 表示当指标不再升高(如监测 accuracy)。
    factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor
    patience(int)- 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率。
    verbose(bool)- 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))
    threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。
    当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );
    当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );
    当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;
    当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;
    threshold(float)- 配合 threshold_mode 使用。
    cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
    min_lr(float or list)- 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。
    eps(float)- 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。

 

6 自定义调整学习率 LambdaLR

为不同参数组设定不同学习率调整策略。调整规则为,lr=base_lr∗lmbda(self.last_epoch)

fine-tune 中十分有用,我们不仅可为不同的层设定不同的学习率,还可以为其设定不同的学习率调整策略。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

    lr_lambda(function or list)- 一个计算学习率调整倍数的函数,输入通常为 step,当有多个参数组时,设为 list。

7 自定义调整学习率:CyclicLR https://arxiv.org/pdf/1506.01186.pdf

torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr, max_lr, step_size_up=2000, step_size_down=None, mode='triangular', gamma=1.0, scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, last_epoch=-1)

原 PyTorch学习之六个学习率调整策略.图示_第7张图片 原 PyTorch学习之六个学习率调整策略.图示_第8张图片

2.1 学习率调整小结

Pytorch提供了六种学习率调整方法,可分为三大类,分别是

    有序调整;
    自适应调整;
    自定义调整。
    第一类,依一定规律有序进行调整,这一类是最常用的,分别是等间隔下降(Step),按需设定下降间隔(MultiStep),指数下降(Exponential)和CosineAnnealing。这四种方法的调整时机都是人为可控的,也是训练时常用到的。
    第二类,依训练状况伺机调整,这就是ReduceLROnPlateau方法。该法通过监测某一指标的变化情况,当该指标不再怎么变化的时候,就是调整学习率的时机,因而属于自适应的调整。
    第三类,自定义调整,Lambda。Lambda方法提供的调整策略十分灵活,我们可以为不同的层设定不同的学习率调整方法,这在fine-tune中十分有用,我们不仅可为不同的层设定不同的学习率,还可以为其设定不同的学习率调整策略,简直不能更棒!

 
---------------------  
作者:TensorSense  
来源:CSDN  
原文:https://blog.csdn.net/u011995719/article/details/89486359  
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(遇到的问题,深度学习)