海量日志采集Flume(HA)

海量日志采集Flume(HA)

                                                        海量日志采集Flume(HA)

1.绍:

    FlumeCloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

2.日志采集

    Flume—对哪个ip  哪个端口进行监控 --- 数据监控接收数据----内存存储本地硬盘

3.数据处理

  Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。 Flume提供了从Console(控制台)、RPCThrift-RPC)、Text(文件)、Tail(UNIX tail)、Syslog(Syslog日志系统,支持TCPUDP2种模式),exec(命令执行)等数据源上收集数据的能力。

4.Flume原理:

        Flume OG:

            海量日志采集Flume(HA)_第1张图片

    

            Flume逻辑上分三层架构:AgentCollectorStorage。采用多Master,为保持数据一致项,使用zookeeper,保持数据高可用和一致性。

            特点:

              ·  3个角色:代理节点(agent),收集节点(collector),主节点(master).

            ·   gent 从各个数据源收集日志数据,将收集到的数据集中到 Collector ,然后由收集节点汇总存入 HDFS master 负责管理 agent collector 的活动。
            ·  
agent collector source sink 组成,代表在当前节点数据是从 source 传送到 sink

        Flume NG

            海量日志采集Flume(HA)_第2张图片
            NG只有一个节点:代理节点(agent)Flume NG的 agent source sink Channel  组成。如下关系
       海量日志采集Flume(HA)_第3张图片
                         

· Source:完成对日志数据的收集,分成 transtion event 打入到Channel之中。

Source类型

说明

Avro Source

支持Avro协议(实际上是Avro RPC),提供一个Avro的接口,需要往设置的地址和端口发送Avro消息,Source就能接收到,如:Log4j Appender通过Avro Source将消息发送到Agent

Thrift Source

支持Thrift协议,提供一个Thrift接口,类似Avro

Exec Source

Source启动的时候会运行一个设置的UNIX命令(比如 cat file),该命令会不断地往标准输出(stdout)输出数据,这些数据就会被打包成Event,进行处理

JMS Source

JMS系统(消息、主题)中读取数据,类似ActiveMQ

Spooling Directory Source

监听某个目录,该目录有新文件出现时,把文件的内容打包成Event,进行处理

Netcat Source

监控某个端口,将流经端口的每一个文本行数据作为Event输入

Sequence Generator Source

序列生成器数据源,生产序列数据

Syslog Sources

读取syslog数据,产生Event,支持UDPTCP两种协议

HTTP Source

基于HTTP POSTGET方式的数据源,支持JSONBLOB表示形式

Legacy Sources

兼容老的Flume OGSource0.9.x版本)

自定义Source

使用者通过实现Flume提供的接口来定制满足需求的Source


· Channel:主要提供一个队列的功能,对source提供中的数据进行简单的缓存。 

Channel类型

说明

Memory Channel

Event数据存储在内存中

JDBC Channel

Event数据存储在持久化存储中,当前Flume Channel内置支持Derby

File Channel

Event数据存储在磁盘文件中

Spillable Memory Channel

Event数据存储在内存中和磁盘上,当内存队列满了,会持久化到磁盘文件(当前试验性的,不建议生产环境使用)

Pseudo Transaction Channel

测试用途

Custom Channel

自定义Channel实现  

· Sink:取出Channel中的数据,进行相应的存储文件系统,数据库,或者提交到远程服务器。

Sink类型

说明

HDFS Sink

数据写入HDFS

Logger Sink

数据写入日志文件

Avro Sink

数据被转换成Avro Event,然后发送到配置的RPC端口上

Thrift Sink

数据被转换成Thrift Event,然后发送到配置的RPC端口上

IRC Sink

数据在IRC上进行回放

File Roll Sink

存储数据到本地文件系统

Null Sink

丢弃到所有数据

HBase Sink

数据写入HBase数据库 

Morphline Solr Sink

数据发送到Solr搜索服务器(集群)

ElasticSearch Sink

数据发送到Elastic Search搜索服务器(集群)

Kite Dataset Sink

写数据到Kite Dataset,试验性质的

Custom Sink

自定义Sink实现


一个sink和channel只能收集一种类型数据日志,但是可以有多个sink和channel ,source则可以接受多种类型数据日志,如下:

海量日志采集Flume(HA)_第4张图片

Flume安装和使用:

    海量日志采集Flume(HA)_第5张图片

    安装海量日志采集Flume(HA)_第6张图片

海量日志采集Flume(HA)_第7张图片


海量日志采集Flume(HA)_第8张图片


运行配置:

海量日志采集Flume(HA)_第9张图片


a1.sources = r1
a1.sinks = k1
a1.channels = c1


# Describe configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141


# Describe the sink
a1.sinks.k1.type = logger


# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100


# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

运行:

在/home/bigdata/flume1.6目录下运行

 flume-ng agent -n a1 -c . -f ./conf/avro.conf -Dflume.root.logger=INFO,console

海量日志采集Flume(HA)_第10张图片


当flume可以运行我们就体会下收集不同数据源(source)日志,并存放到hdfs上

source:  avro

flume-ng avro-client -c /home/bigdata/flime1.6/ -H ry-hadoop1 -p4141 -F ./avro.txt 

海量日志采集Flume(HA)_第11张图片


source:  Exec

b1.sources=r1
b1.channels=c1
b1.sinks=k1

b1.sources.r1.type=exec
b1.sources.r1.command=tail -F /home/data/avro.txt

b1.channels.c1.type=memory
b1.channels.c1.capacity=1000
b1.channels.c1.transactionCapacity=100

b1.sinks.k1.type=logger

b1.sources.r1.channels=c1
b1.sinks.k1.channel=c1

海量日志采集Flume(HA)_第12张图片


source:   spooldir只能对一级目录进行收集

在数据Linux本地建一个文件夹log

agent.sources=r1
agent.channels=c1
agent.sinks=k1

agent.sources.r1.type=spooldir
agent.sources.r1.spooldir=/home/data/log
agent.sources.r1.fileHeader=true

agent.channels.c1.type=memory
agent.channels.c1.capacity=1000
agent.channels.c1.transactionCapacity=100

agent.sinks.k1.type=logger

agent.sources.r1.channels=c1
agent.sinks.k1.channel=c1
启动:
flume-ng agent -n agent -c /home/bigdata/flime1.6/ -f /home/bigdata/flime1.6/conf/spoolDir.conf -Dflume.root.logger=INFO,console

海量日志采集Flume(HA)_第13张图片


source: TCP

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = 0.0.0.0

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

    海量日志采集Flume(HA)_第14张图片

海量日志采集Flume(HA)_第15张图片

海量日志采集Flume(HA)_第16张图片


source:JSONHandler

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = org.apache.flume.source.http.HTTPSource
a1.sources.r1.port = 8888

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
海量日志采集Flume(HA)_第17张图片


source 就讲5个。

然后讲存储

hdfsSinK.conf

配置:

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = 0.0.0.0

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://ry-hadoop1:8020/flume
a1.sinks.k1.hdfs.filePrefix = Syslog
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 1
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=Text
a1.sinks.k1.hdfs.rollInterval=0
a1.sinks.k1.hdfs.rollSize=10240
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.idleTimeout=60

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

运行:

flume-ng agent -n a1 -c . -f ./conf/hdfsSink.conf -Dflume.root.logger=INFO,console

海量日志采集Flume(HA)_第18张图片


写一个shell脚本,循环输出tcp数据,然后收集在hdfs种

#!/bin/sh
int=1
while(( $int<=500000  ))
do
	echo "this is message"$int | nc ry-hadoop1 5140
	echo "this is message"$int
	let "int++"
done

海量日志采集Flume(HA)_第19张图片


设定收集日志的具体时间。

海量日志采集Flume(HA)_第20张图片


海量日志采集Flume(HA)_第21张图片





那么有个问题,当hadoop维护期间不能存储数据时,我们的日志文件存在哪里呢?

本地,那么我们看看如何存在本地

通道类型为文本形式

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = 0.0.0.0

# Describe the sink
a1.sinks.k1.type = file_roll
a1.sinks.k1.sink.directory = /home/data/log/
a1.sinks.k1.sink.serializer=TEXT

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

海量日志采集Flume(HA)_第22张图片


channels通道类型为文件形式

a1.sources = s1
a1.channels = c1
a1.sinks = k1

# For each one of the sources, the type is defined
a1.sources.s1.type = syslogtcp
a1.sources.s1.host = localhost
a1.sources.s1.port = 5180

# Each sink's type must be defined
a1.sinks.k1.type = logger

# Each channel's type is defined.
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /home/data/log/checkpoint
a1.channels.c1.dataDir = /home/data/log/data

#Bind the source and sinks to channels
a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1


flume的HA:

        Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。大白话来说就是,当你采集日志的时候可以通过一个agent进行保存多份日志。启动多台集群讲多台的flume连接起来,可以同时接收到其中一台的数据进行备份,这个有点类似zookeeper。

   1) Replicating Channel Selector   多个Channel
在3台机器上启动flume的avor,然后复制master连接启动source为:replicating的flume

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

在master启动连接:

a1.sources = r1
a1.channels = c1 c2
a1.sinks = k1 k2

# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.host = 0.0.0.0
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.type = replicating

# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = master
a1.sinks.k1.port = 5555

a1.sinks.k2.type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2.hostname = slave1
a1.sinks.k2.port = 5555

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100

当你写一条数据进入日志时,其他3台机器都会有反应


1) MulChnSel_a1.conf

    输入数据映射的匹配。

海量日志采集Flume(HA)_第23张图片

a1.sources = s1
a1.channels = c1 c2
a1.sinks = k1 k2

# For each one of the sources, the type is defined
a1.sources.s1.type = org.apache.flume.source.http.HTTPSource
a1.sources.s1.port = 8887
a1.sources.s1.channels = c1 c2
a1.sources.s1.selector.type = multiplexing

a1.sources.s1.selector.header = company
a1.sources.s1.selector.mapping.ali = c1
a1.sources.s1.selector.mapping.baidu = c2
a1.sources.s1.selector.default = c2

# Each sink's type must be defined
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = master
a1.sinks.k1.port = 5555
a1.sinks.k1.channel = c1

a1.sinks.k2.type = avro
a1.sinks.k2.hostname = slave1
a1.sinks.k2.port = 5555
a1.sinks.k2.channel = c2

# Each channel's type is defined.
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
海量日志采集Flume(HA)_第24张图片

3)Flume Sink Processors

failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink

a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
  
#这个是配置failover的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
#处理的类型是failover
a1.sinkgroups.g1.processor.type = failover
#优先级,数字越大优先级越高,每个sink的优先级必须不相同
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
#设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
a1.sinkgroups.g1.processor.maxpenalty = 10000
  
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.type = replicating
  
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = m1
a1.sinks.k1.port = 5555
  
a1.sinks.k2.type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2.hostname = m2
a1.sinks.k2.port = 5555
  
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
  
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
 
在hadoop1创建Flume_Sink_Processors_avro.conf配置文件
a1.sources = r1
a1.sinks = k1
a1.channels = c1
  
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
  
# Describe the sink
a1.sinks.k1.type = logger
  
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
  
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动:

flume-ng agent -c . -f /home/bigdata/flume/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

测试:

然后在hadoop1hadoop2的任意一台机器上,测试产生log

# echo "idoall.org test1 failover" | nc localhost 5140


4) Load balancing Sink Processor

        load balance typefailover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。

a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
  
#这个是配置Load balancing的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
  
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
  
  
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = m1
a1.sinks.k1.port = 5555
  
a1.sinks.k2.type = avro
a1.sinks.k2.channel = c1
a1.sinks.k2.hostname = m2
a1.sinks.k2.port = 5555
  
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

启动:

#flume-ng agent -c . -f /home/bigdata/flume/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

测试:

输入太快产生的日志可能会落到一台机器上

 echo "idoall.org test1" | nc localhost 5140



flume的海量日志离线采集于存储。不同的数据源,不同的数据存储方式(本地和hdfs),均衡负载的存储方式,存储时间,存储数据大小等等的设定。

posted on 2018-07-04 20:57 meiLinYa 阅读( ...) 评论( ...) 编辑 收藏

你可能感兴趣的:(海量日志采集Flume(HA))