单源加权图最短路径问题(权值非负)-Dijkstra算法

解决单源最短路径的一个常用算法叫做:Dijkstra算法,这是一个非常经典的贪心算法例子。

注意:这个算法只对权值非负情况有效。

在每个阶段,Dijkstra算法选择一个顶点v,它在所有unknown顶点中具有最小的distance,同时算法将起点s到v的最短路径声明为known。
这个算法的本质就是 给定起点,然后假设你有一个点集(known点集),对这个点集中的点,我们已经求出起点到其的最短距离。然后慢慢扩张这个集合。直到某一时刻它包括目标点。
具体概念详细介绍见书吧,下面结合一个例子,阐述一下该算法遍历顶点的过程。
  
   单源加权图最短路径问题(权值非负)-Dijkstra算法_第1张图片
假设开始顶点s为v1。
则,第一个选择的顶点是v1,路径长是0,该顶点标记为known,
            
    1: known(v1)    unknown(v2,v3,v4,v5,v6,v7);    这时由known点集扩充,v4 为下一个最短路径顶点,路径长为1,标记v4为known
            
             单源加权图最短路径问题(权值非负)-Dijkstra算法_第2张图片
    2: known(v1,v4) unknown(v2,v3,v5,v6,v7);       这时由known点集扩充,v2 为下一个最短路径顶点,路径长为2,标记v2为known
             单源加权图最短路径问题(权值非负)-Dijkstra算法_第3张图片
    3: known(v1,v4,v2) unknown(v3,v5,v6,v7);       这时由known点集扩充,v3,v5 为下一个最短路径顶点,路径长为3, 标记v3,v5为known
               
    4:  known(v1,v4,v2,v3,v5) unknown(v6,v7);       这时由known点集扩充,v7 为下一个最短路径顶点,路径长为5, 标记v7为known
             单源加权图最短路径问题(权值非负)-Dijkstra算法_第4张图片
    5:  known(v1,v4,v2,v3,v5,v7) unknown(v6);       这时由known点集扩充,v6 为下一个最短路径顶点,路径长为6, 标记v6为known
            单源加权图最短路径问题(权值非负)-Dijkstra算法_第5张图片
伪代码:
        struct VertexNode

        {

            char data[2];

            int distance;

            bool known;

            VertexNode* path;

            adjVertexNode* list;

        };

 

         void Dijkstra(Graph& g, VertexNode& s)
        {
            for each vertex v in g
            {
                v.distance = INFINITY;
                v.known = false;
                v.path = NULL;
            }
            s.distance = 0;
            for (int i=0; i
            {
                vertex v = smallest unknown distance vertex;
                if (v==NULL)
                    break;
                else
                    v.known = true;
                for each w adjacent to v
                {
                    if (!w.known)                    
                    {
                        if (v.distance + weight(v,w) < w.distance)
                        { 
                            w.distance = v.distance + weight(v,w);
                            w.path = v;
                        }
                    }
                }
            }
        }
        void PrintPath( Graph& g, VertexNode* target)
        {// print the shortest path from s to target
            if(target.path!=NULL)
            {
                PrintPath(g, target.path);
                cout << " " ;
            }
            cout << target ;
        }
代码实现:

 

#include
using namespace std;

#define MAX_VERTEX_NUM    20
#define INFINITY    2147483647
struct adjVertexNode
{
    int adjVertexPosition;
    int weight;
    adjVertexNode * next;
};
struct VertexNode
{
    char data [ 2 ];
    int distance;
    bool known;
    VertexNode * path;
    adjVertexNode * list;
};
struct Graph
{
    VertexNode VertexNode [ MAX_VERTEX_NUM ];
    int vertexNum;
    int edgeNum;
};

void CreateGraph ( Graph & g)
{
     int i , j , edgeStart , edgeEnd , edgeWeight;
     adjVertexNode * adjNode;
     cout << "Please input vertex and edge num (vnum enum):" << endl;
     cin >> g . vertexNum >> g . edgeNum;
     cout << "Please input vertex information (v1) /n note: every vertex info end with Enter" << endl;
     for ( i = 0; i < g . vertexNum; i ++)
     {
         cin >> g . VertexNode [ i ]. data; // vertex data info.
         g . VertexNode [ i ]. list = NULL;
     }
     cout << "input edge information(start end weight):" << endl;
     for ( j = 0; j < g . edgeNum; j ++)
     {
         cin >> edgeStart >> edgeEnd >> edgeWeight;
         adjNode = new adjVertexNode;
         adjNode -> weight = edgeWeight;
         adjNode -> adjVertexPosition = edgeEnd - 1; // because array begin from 0, so it is j-1
         // 将邻接点信息插入到顶点Vi的边表头部,注意是头部!!!不是尾部。
         adjNode -> next = g . VertexNode [ edgeStart - 1 ]. list;
         g . VertexNode [ edgeStart - 1 ]. list = adjNode;
     }
}

void PrintAdjList( const Graph & g)
{
    for ( int i = 0; i < g . vertexNum; i ++)
    {
        cout << g . VertexNode [ i ]. data << "->";
        adjVertexNode * head = g . VertexNode [ i ]. list;
        if ( head == NULL)
            cout << "NULL";
        while ( head != NULL)
        {
            cout << head -> adjVertexPosition + 1 << " ";
            head = head -> next;
        }
        cout << endl;
    }
}
void DeleteGraph( Graph & g)
{
    for ( int i = 0; i < g . vertexNum; i ++)
    {
        adjVertexNode * tmp = NULL;
        while( g . VertexNode [ i ]. list != NULL)
        {
            tmp = g . VertexNode [ i ]. list;
            g . VertexNode [ i ]. list = g . VertexNode [ i ]. list -> next;
            delete tmp;
            tmp = NULL;
        }
    }
}
VertexNode * FindSmallestVertex( Graph & g)
{
    int smallest = INFINITY;
    VertexNode * sp = NULL;

   
    for ( int i = 0; i < g . vertexNum; i ++)
    {
        if ( ! g . VertexNode [ i ]. known && g . VertexNode [ i ]. distance < smallest)
        {
            smallest = g . VertexNode [ i ]. distance;
            sp = &( g . VertexNode [ i ]);
        }
    }
    return sp;
}

void Dijkstra( Graph & g , VertexNode & s)
{
    int i;
    for ( i = 0; i < g . vertexNum; i ++)
    {
        g . VertexNode [ i ]. known = false;
        g . VertexNode [ i ]. distance = INFINITY;
        g . VertexNode [ i ]. path = NULL;
    }
    s . distance = 0;
    for( i = 0; i < g . vertexNum; i ++)
    {
        VertexNode * v = FindSmallestVertex( g);
        if( v == NULL)
            break;
        v -> known = true;
        adjVertexNode * head = v -> list;
        while ( head != NULL)
        {
            VertexNode * w = & g . VertexNode [ head -> adjVertexPosition ];
            if( !( w -> known) )
            {
                if( v -> distance + head -> weight < w -> distance)
                {
                    w -> distance = v -> distance + head -> weight;
                    w -> path = v;
            }
        }
        head = head -> next;
    }
}
void PrintPath( Graph & g , VertexNode * source , VertexNode * target)
{
    if ( source != target && target -> path == NULL)
    {
        cout << "There is no shortest path from " << source -> data << " to " << target -> data << endl;
    }
    else
    {
        if ( target -> path != NULL)
        {
            PrintPath( g , source , target -> path);
            cout << " ";
        }
        cout << target -> data ;
    }
}

int main( int argc , const char ** argv)
{
    Graph g;
    CreateGraph( g);
    PrintAdjList( g);
    VertexNode & start = g . VertexNode [ 0 ];
    VertexNode & end = g . VertexNode [ 6 ];
    Dijkstra( g , start);
    cout << "print the shortest path from v1 to v7" << endl;
    PrintPath( g , & start , & end);
    cout << endl;
    DeleteGraph( g);
    return 0;
}
运行结果:
单源加权图最短路径问题(权值非负)-Dijkstra算法_第6张图片
对于这个算法,vertex v = smallest unknown distance vertex;如果用最简单的扫描数组方式实现,则该部操作时间复杂度为O(|V|), 所以该算法将花费O(|V|2)查找最小距离顶点,同时,注意到最内层循环,最终对每条边会执行一次,所以该算法时间复杂度为O(|V|2+|E|)
对于无向图,可以认为是双向的有向图,所以只要更改边的输入信息即可。
仍以上例看,有向图输入的边信息为12条边:
1 2 2
3 1 4
1 4 1
2 4 3
2 5 10
4 3 2
4 5 2
3 6 5
4 6 8
4 7 4
5 7 6
7 6 1
如果是无相图,即双向的有向图,则应该输入24条边信息,12组对称的边信息即可:
1 2 2   
2 1 2
3 1 4   
1 3 4
1 4 1   
4 1 1
2 4 3   
4 2 3
2 5 10  
5 2 10
4 3 2   
3 4 2
4 5 2   
5 4 2
3 6 5   
6 3 5
4 6 8   
6 4 8
4 7 4   
7 4 4
5 7 6   
7 5 6
7 6 1   
6 7 1
运行结果:
单源加权图最短路径问题(权值非负)-Dijkstra算法_第7张图片
即:Dijkstra算法既可以求无向图也可以求有向图最短路径。

你可能感兴趣的:(算法)