算法与数据结构(2),Map

算法与数据结构(1),List

算法与数据结构(2),Map

算法与数据结构(3),并发结构

睡了不到六个小时,被一个很奇葩又很奇怪的梦吓醒,以最快的速度穿好衣服,跑下楼去买了杯咖啡上来,文字没写多少,咖啡倒是一饮而尽。

Map是一种非常有用的数据结构。先为大家画一张简单的Map类族图。

算法与数据结构(2),Map_第1张图片
Map类族

上图表示,Map类族中主要实现类有Hashtable,HashMap,LinkedHashMap,TreeMap。在Hashtable子类中,还有Properties类的实现。
这里主要说明Hashtable和HashMap并没有太大的差异,类似ArrayList和Vector。
这里主要说明三点:

  1. Hashtable的大部分方法做了同步,而HashMap没有,因此HashMap不是线程安全的。
  2. Hashtable不允许key或者value使用null值,而HashMap可以。
  3. 在内部算法上,他们对key的hash算法和hash值到内存索引的映射算法不同。

HashMap的实现原理

HashMap就是将key做hash算法,然后将hash值映射到内存地址,直接取得key所对应的数据。在HashMap中低层数据结构使用的是数组,所谓的内存地址即素组的下标索引。
HashMap的高性能需要保证以下几点:

  1. hash算法必须是高效的;
  2. hash值到内存地址(数组索引)的算法是快速的;
  3. 根据内存地址(数组索引)可以直接取得对应的值。

首先先来看第一点,hash算法的高效性。

int hash = hash(key.hashCode());
public native int hashCode();

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

第一行代码是HashMap中用于计算key的hash值,它前后分别调用了Object类的hashCode( )方法和HashMap的内部函数hash( )。Object类中hashCode( )方法是默认的native的实现,可以认为不存在性能问题。而hash( )函数的实现全部基于位运算,因此,也是高效的。

native方法通常比一般的方法快,因为他直接调用操作系统本地链接库的API。由于hashCode( )方法是可以重载的,因此,为了保证HashMap的性能,需要确保相关的hashCode( )是高效的。而位运算也比算数、逻辑运算快。

当取得key的hash值后需要通过hash值得到内存地址:

int i = indexFor(hash, table.length);

/**
 * Returns index for hash code h.
 */
static int indexFor(int h, int length) {
    return h & (length-1);
}

indexFor( )函数通过将hash值和数组长度按位取与直接得到数组索引。
最后由indexFor( )函数返回的数组索引直接通过数组下标便可取得对应的值,直接内存访问速度也是相当快的。因此,可以认为HashMap是高性能的。

Hash冲突

如下图所示需要存放到HashMap中的两个元素1和2,通过hash计算后,发现对应在内存中的同一个地址。

算法与数据结构(2),Map_第2张图片
Hash冲突示意

那么HashMap是如何处理Hash冲突的呢,这就要深入HashMap,从HashMap的数据结构说起。

虽然HashMap的底层实现使用的数组,但是数组内的元素并不是简单的值,而是一个Entry对象,如下图所示

算法与数据结构(2),Map_第3张图片
HashMap表项结构

可以看到HashMap的内部维护着一个Entry数组,每一个Entry表项包括key、value、next、hash。这里特别注意,其中next,它指向一个Entry。通过解析HashMap的put( )方法,可以看到当put( )有冲突时,新的Entry依然会被安放在对应的索引下标内,并替换原有的值。同时,为了保证旧值不丢失,会将新的Entry的next指向旧指,这便实现了,在一个数组索引空间内存放多个值项。

/**
 * Associates the specified value with the specified key in this map.
 * If the map previously contained a mapping for the key, the old
 * value is replaced.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with key, or
 *         null if there was no mapping for key.
 *         (A null return can also indicate that the map
 *         previously associated null with key.)
 */
public V put(K key, V value) {
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key.hashCode());
    int i = indexFor(hash, table.length);
    for (Entry e = table[i]; e != null; e = e.next) {
        Object k;
        
        /*如果当前的key已经存在于HashMap中*/
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;       //取得旧值
            e.value = value;
            e.recordAccess(this);
            return oldValue;            //返回旧值
        }
    }

    modCount++;
    addEntry(hash, key, value, i);      //添加当前表项到i位置
    return null;
}

/**
 * Adds a new entry with the specified key, value and hash code to
 * the specified bucket.  It is the responsibility of this
 * method to resize the table if appropriate.
 *
 * Subclass overrides this to alter the behavior of put method.
 */
void addEntry(int hash, K key, V value, int bucketIndex) {

    Entry e = table[bucketIndex];      //取得当前位置的Entry

    /*将新增加元素放到i的位置,并将他的next指向旧的元素*/
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    if (size++ >= threshold)
        resize(2 * table.length);
}

基于HashMap的这种实现机制,只要hashCode( )hash( )方法实现的足够好,能够尽可能的减少冲突,那么对HashMap的操作几乎等价于对数组的随机访问,具有很好的性能。但是,如果hashCode( )hash( )方法实现的较差,在大量冲突产生的情况下,HashMap事实上就退化为几个链表,在上一遍博客中,我曾提到过,对链表结构进行随机访问,性能是很差的,这个时候对HashMap的操作无异于遍历链表。

负载因子
除hashCode( )的实现外,影响HashMap性能的还有还有它的容量参数。和ArrayList和Vector一样,这种基于数组的结构,不可避免的需要在数组空间不足时,进行扩容。而数组的重组相对而言较为耗时。
HashMap提供了两个可以指定初始化容量的构造函数:

public HashMap(int initialCapacity)
public HashMap(int initialCapacity, float loadFactor)

其中initialCapacity指定了HashMap的初始容量,loadFactor指定了其负载因子。初始容量即数组的大小,HashMap会使用大于等于initialCapacity并且是2的指数次幂的最小整数作为内置数组的大小(比如,传入initialCapacity的参数为10,2^3 = 8 < 10 < 2^4 = 16,则16作为内置数组的初始化容量)。负载因子又叫做填充比,它是介于0和1之间的浮点数,它决定了HashMap在扩容之前,其内部数组的填充度。默认情况下HashMap初始容量为16,负载因子为0.75。

负载因子 = 元素个数 / 内部数组总大小

loadFactor = threshold / capacity

在实际使用中,负载因子也可以设置为大于1的数,但如果这样做,HashMap会产生大量冲突,无异于尝试往只有10个口袋的书包里放15个苹果。必然有的口袋要装多余一个苹果。

在HashMap内部,还维护了一个threshold变量,它始终被定义为当前数组总容量和负载因子的乘积,它表示HashMap的阈值,。当HashMap的实际容量超过阈值时,便会进行扩容。因此,HashMap的实际填充率不会超过负载因子。

有关HashMap扩容相关代码如下:

/**
 * Rehashes the contents of this map into a new array with a
 * larger capacity.  This method is called automatically when the
 * number of keys in this map reaches its threshold.
 *
 * If current capacity is MAXIMUM_CAPACITY, this method does not
 * resize the map, but sets threshold to Integer.MAX_VALUE.
 * This has the effect of preventing future calls.
 *
 * @param newCapacity the new capacity, MUST be a power of two;
 *        must be greater than current capacity unless current
 *        capacity is MAXIMUM_CAPACITY (in which case value
 *        is irrelevant).
 */
void resize(int newCapacity) {
    
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }

    /*创建新的数组*/
    Entry[] newTable = new Entry[newCapacity];
    /*将所有数组转移到新的数组中*/
    transfer(newTable);
    table = newTable;
    /*重新设置阈值,为新的容量和负载因子的乘积*/
    threshold = (int)(newCapacity * loadFactor);
}

/**
 * Transfers all entries from current table to newTable.
 */
void transfer(Entry[] newTable) {

    Entry[] src = table;
    int newCapacity = newTable.length;

    /*遍历源数组内所有元素*/
    for (int j = 0; j < src.length; j++) {

        Entry e = src[j];

        /*当该表项索引有值存在时,则进行迁移*/
        if (e != null) {
            src[j] = null;

            do {
                /*进行数据迁移,该索引值下有冲突记录*/
                Entry next = e.next;
                /*计算该表项在新数组内的索引,并放置到新的数组中,然后建立新的链表关系*/
                /*因为新的容量变大,所以每个元素的哈希值和位置都是不一样的*/
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            } while (e != null);
        }
    }
}

通过扩容,可以很明显的看到,该操作会遍历整个HashMap,所以,应该尽量避免该操作的发生,设置合理的初始化大小和负载因子,可以有效的减少HashMap扩容的次数。

HashMap中默认的负载因子为0.75,直接分配较大的初始容量可以较少扩容次数,但是这样有会造成内存的浪费。而在尽可能避免扩容次数的情况下,一个较大的负载因子,就意味着使用使用较少的内存空间,而空间越小,就越容易引起hash冲突,因此,更加需要一个可靠,高效的hashCode( )算法。

HashMap的性能在一定程度上取决于hashCode( )的实现,一个好的hashCode( )算法,可以尽可能减少冲突,从而提高HashMap的访问速度。

LinkedHashMap

总体来说HashMap的性能表现是不错的,但是,它最大的缺点就是无序性,被存入内置数组中的元素,再遍历数组时,输出的总是无序的。如果需希望元素保存输入是的顺序,则需要使用LinkedHashMap。

LinkedHashMap集成HashMap,因此,具备了HashMap的优良特性——高性能。在HashMap的基础上,LinkedHashMap又在内部增加了一个链表,用以存放元素的顺序。因此LinkedHashMap可以理解成一个维护了元素顺次序表的HashMap

LinkedHashMap提供了两种类型的顺序:一是元素插入时的顺序;二是最近访问的顺序。可以通过构造函数设置顺序类型。

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) 

其中accessOrder为true时,按照元素最后访问顺序排序(LurCache使用该排序方式);当accessOrder为false时,按照插入顺序排序,默认是false。

在内部实现中,通过集成HashMap.Entry类,实现了LinkedHashMap.Entry内部类,为HashMap.Entry增加了before和after属性用以记录某一表项的前驱和后驱(与LinkedList相似),形成循环链表结构。如下图所示:

算法与数据结构(2),Map_第4张图片
LinkedHashMap表项结构

在这种结构中,除了HashMap固有的功能特性外,每个Entry表项的after指向其后驱元素Entry,而后驱元素的before指向其前驱元素,从而构成一个循环链表(类似LinkedList)。

需要注意的是,如果在LinkedHashMap初始化的时候设置了accessOrder为true,应该避免这样的操作:

    for (Iterator iterator = (Iterator) linkedHashMap.keySet(); iterator.hasNext(); ) {

        String s = iterator.next();

        Log.e("joker", linkedHashMap.get(s));
    }

该代码会报ConcurrentModificationException,主要出现在迭代过程中集合被修改,不仅是LinkedHashMap,所以集合都不允许在迭代器模式中修改集合。一般会认为put( )remove( )会修改集合的结构,但是LinkedHashMap的get( )很特殊,get( )方法会修改LinkedHashMap中的链表结构,以便将最近访问的元素放置到链表的末端,所以,会引起这个错误。

片尾Tip:

昨晚翻看IntentService源码发现一个停止服务的API,觉得很有意思。

IntentService中:onHandleIntent回调执行完毕后,会马上调用stopSelf( )方法,试图停止Service。每次通过Context.startService( )启动服务,都会生成一个startId。但是,只有当startId等于最后一次调用Context.startService( )后生成的startId时,才能正确停止掉服务,否则服务是不会停止的。

private final class ServiceHandler extends Handler {
    public ServiceHandler(Looper looper) {
        super(looper);
    }

    @Override
    public void handleMessage(Message msg) {
        onHandleIntent((Intent)msg.obj);
        stopSelf(msg.arg1);         //停止服务
    }
}

@Override
public void onStart(Intent intent, int startId) {
    Message msg = mServiceHandler.obtainMessage();
    msg.arg1 = startId;
    msg.obj = intent;
    mServiceHandler.sendMessage(msg);
}

/**
 * Old version of {@link #stopSelfResult} that doesn't return a result.
 *  
 * @see #stopSelfResult
 */
public final void stopSelf(int startId) {
    if (mActivityManager == null) {
        return;
    }
    try {
        mActivityManager.stopServiceToken(
                new ComponentName(this, mClassName), mToken, startId);
    } catch (RemoteException ex) {
    }
}

你可能感兴趣的:(算法与数据结构(2),Map)