# -*- coding: utf-8 -*-
"""
Created on Mon Dec 10 14:37:14 2018
@author: muli
"""
from sklearn.datasets import load_digits
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
import scipy
def test_GridSearchCV():
'''
测试 GridSearchCV 的用法。使用 LogisticRegression 作为分类器,主要优化 C、penalty、multi_class 等参数
:return: None
'''
### 加载数据
digits = load_digits()
X_train,X_test,y_train,y_test=train_test_split(digits.data, digits.target,test_size=0.25,
random_state=0,stratify=digits.target)
#### 参数优化 ######
tuned_parameters = [{'penalty': ['l1','l2'],
'C': [0.01,0.05,0.1,0.5,1,5,10,50,100],
'solver':['liblinear'],
'multi_class': ['ovr']},
{'penalty': ['l2'],
'C': [0.01,0.05,0.1,0.5,1,5,10,50,100],
'solver':['lbfgs'],
'multi_class': ['ovr','multinomial']},
]
clf=GridSearchCV(LogisticRegression(tol=1e-6),tuned_parameters,cv=10)
clf.fit(X_train,y_train)
print("Best parameters set found:",clf.best_params_)
print("Grid scores:")
for params, mean_score, scores in clf.grid_scores_:
print("\t%0.3f (+/-%0.03f) for %s" % (mean_score, scores.std() * 2, params))
print("Optimized Score:",clf.score(X_test,y_test))
print("Detailed classification report:")
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
def test_RandomizedSearchCV():
'''
测试 RandomizedSearchCV 的用法。使用 LogisticRegression 作为分类器,主要优化 C、multi_class 等参数。其中 C 的分布函数为指数分布
:return: None
'''
### 加载数据
digits = load_digits()
X_train,X_test,y_train,y_test=train_test_split(digits.data, digits.target,
test_size=0.25,random_state=0,stratify=digits.target)
#### 参数优化 ######
tuned_parameters ={ 'C': scipy.stats.expon(scale=100), # 指数分布
'multi_class': ['ovr','multinomial']}
clf=RandomizedSearchCV(LogisticRegression(penalty='l2',solver='lbfgs',tol=1e-6),
tuned_parameters,cv=10,scoring="accuracy",n_iter=100)
clf.fit(X_train,y_train)
print("Best parameters set found:",clf.best_params_)
print("Randomized Grid scores:")
for params, mean_score, scores in clf.grid_scores_:
print("\t%0.3f (+/-%0.03f) for %s" % (mean_score, scores.std() * 2, params))
print("Optimized Score:",clf.score(X_test,y_test))
print("Detailed classification report:")
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
if __name__=='__main__':
# 调用 test_GridSearchCV
# test_GridSearchCV()
# 调用 test_RandomizedSearchCV
test_RandomizedSearchCV()