gaussianKernel.m
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim
% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);
% You need to return the following variables correctly.
sim = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
%
SSq = sum((x1-x2).^2);
Temp1 = SSq / (2 * sigma^2);
sim=exp(-Temp1);
% =============================================================
end
dataset3Params.m
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
C_try=[0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30];
sigma_try=[0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30];
for i=1:length(C_try)
C=C_try(i);
for j=1:length(sigma_try)
sigma=sigma_try(j);
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
predictions = svmPredict(model,Xval);
error(j) = mean(double(predictions ~= yval));
% Accumulating error from i=1:m
if (j==1)
error_j=error(j);
else
error_j=[error_j; error(j)];
end
end
if (i==1)
error_i=error_j;
else
error_i=[error_i error_j];
end
end
% Display the error_i in matrix
error_i
% Locate the index of the minimum value in matrix error_i
[r,c]=find(error_i==min(min(error_i)));
% Optimum C and sigma are identified from the matrix above
C=C_try(c);
sigma=sigma_try(r);
% Optimum value of C and sigma are:
%C=1;
%sigma=0.1;
% =========================================================================
end
processEmail.m
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim
% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);
% You need to return the following variables correctly.
sim = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
%
SSq = sum((x1-x2).^2);
Temp1 = SSq / (2 * sigma^2);
sim=exp(-Temp1);
% =============================================================
end
emailFeatures.m
function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
% produces a feature vector from the word indices.
% Total number of words in the dictionary
n = 1899;
% You need to return the following variables correctly.
x = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
% given email (word_indices). To help make it easier to
% process the emails, we have have already pre-processed each
% email and converted each word in the email into an index in
% a fixed dictionary (of 1899 words). The variable
% word_indices contains the list of indices of the words
% which occur in one email.
%
% Concretely, if an email has the text:
%
% The quick brown fox jumped over the lazy dog.
%
% Then, the word_indices vector for this text might look
% like:
%
% 60 100 33 44 10 53 60 58 5
%
% where, we have mapped each word onto a number, for example:
%
% the -- 60
% quick -- 100
% ...
%
% (note: the above numbers are just an example and are not the
% actual mappings).
%
% Your task is take one such word_indices vector and construct
% a binary feature vector that indicates whether a particular
% word occurs in the email. That is, x(i) = 1 when word i
% is present in the email. Concretely, if the word 'the' (say,
% index 60) appears in the email, then x(60) = 1. The feature
% vector should look like:
%
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
%
k = length(word_indices);
for i = 1:k,
if(x(word_indices(i)) == 0)
x(word_indices(i)) = x(word_indices(i)) + 1;
end
end
% =========================================================================
end