UDAF和UDF的介绍

原文链接: https://www.cnblogs.com/cc11001100/p/9471859.html

目录

UDF介绍

UDAF简介

关于UDAF的一个误区

使用UDF

在SQL语句中使用UDF

 直接对列应用UDF(脱离sql)

UDAF使用

继承UserDefinedAggregateFunction

继承Aggregator


 

UDF介绍

UDF(User Define Function),即用户自定义函数,Spark的官方文档中没有对UDF做过多介绍,猜想可能是认为比较简单吧。

几乎所有sql数据库的实现都为用户提供了扩展接口来增强sql语句的处理能力,这些扩展称之为UDXXX,即用户定义(User Define)的XXX,这个XXX可以是对单行操作的UDF,或者是对多行操作的UDAF,或者是UDTF,本次主要介绍UDF。

UDF的UD表示用户定义,既然有用户定义,就会有系统内建(built-in),一些系统内建的函数比如abs,接受一个数字返回它的绝对值,比如substr对字符串进行截取,它们的特点就是在执行sql语句的时候对每行记录调用一次,每调用一次传入一些参数,这些参数通常是表的某一列或者某几列在当前行的值,然后产生一个输出作为结果。

适用场景:UDF使用频率极高,对于单条记录进行比较复杂的操作,使用内置函数无法完成或者比较复杂的情况都比较适合使用UDF。

UDAF简介

先解释一下什么是UDAF(User Defined Aggregate Function),即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出,聚合函数是接受一组(一般是多行)输入然后产生一个输出,即将一组的值想办法聚合一下。

 

关于UDAF的一个误区

我们可能下意识的认为UDAF是需要和group by一起使用的,实际上UDAF可以跟group by一起使用,也可以不跟group by一起使用,这个其实比较好理解,联想到mysql中的max、min等函数,可以:

1

select max(foo) from foobar group by bar;

表示根据bar字段分组,然后求每个分组的最大值,这时候的分组有很多个,使用这个函数对每个分组进行处理,也可以:

1

select max(foo) from foobar;

这种情况可以将整张表看做是一个分组,然后在这个分组(实际上就是一整张表)中求最大值。所以聚合函数实际上是对分组做处理,而不关心分组中记录的具体数量。

 

使用UDF

在SQL语句中使用UDF

在sql语句中使用UDF指的是在spark.sql("select udf_foo(…)")这种方式使用UDF,套路大致有以下几步:

1. 实现UDF,可以是case class,可以是匿名类

2. 注册到spark,将类绑定到一个name,后续会使用这个name来调用函数

3. 在sql语句中调用注册的name调用UDF

下面是一个简单的示例:

package cc11001100.spark.sql.udf
 
import org.apache.spark.sql.SparkSession
 
object SparkUdfInSqlBasicUsageStudy {
 
  def main(args: Array[String]): Unit = {
 
    val spark = SparkSession.builder().master("local[*]").appName("SparkUdfStudy").getOrCreate()
    import spark.implicits._
    // 注册可以在sql语句中使用的UDF
    spark.udf.register("to_uppercase", (s: String) => s.toUpperCase())
    // 创建一张表
    Seq((1, "foo"), (2, "bar")).toDF("id", "text").createOrReplaceTempView("t_foo")
    spark.sql("select id, to_uppercase(text) from t_foo").show()
 
  }
 
}

运行结果:

UDAF和UDF的介绍_第1张图片

 

 直接对列应用UDF(脱离sql)

在sql语句中使用比较麻烦,还要进行注册什么的,可以定义一个UDF然后将它应用到某个列上:

package cc11001100.spark.sql.udf
 
import org.apache.spark.sql.{SparkSession, functions}
 
object SparkUdfInFunctionBasicUsageStudy {
 
  def main(args: Array[String]): Unit = {
 
    val spark = SparkSession.builder().master("local[*]").appName("SparkUdfStudy").getOrCreate()
 
    import spark.implicits._
    val ds = Seq((1, "foo"), (2, "bar")).toDF("id", "text")
    val toUpperCase = functions.udf((s: String) => s.toUpperCase)
    ds.withColumn("text", toUpperCase('text)).show()
 
  }
 
}

运行效果:

UDAF和UDF的介绍_第2张图片

 

需要注意的是受Scala limit 22限制,自定义UDF最多接受22个参数,不过正常情况下完全够用了。

 

UDAF使用

继承UserDefinedAggregateFunction

使用UserDefinedAggregateFunction的套路:

1. 自定义类继承UserDefinedAggregateFunction,对每个阶段方法做实现

2. 在spark中注册UDAF,为其绑定一个名字

3. 然后就可以在sql语句中使用上面绑定的名字调用

 

下面写一个计算平均值的UDAF例子,首先定义一个类继承UserDefinedAggregateFunction:

package cc11001100.spark.sql.udaf
 
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
 
object AverageUserDefinedAggregateFunction extends UserDefinedAggregateFunction {
 
  // 聚合函数的输入数据结构
  override def inputSchema: StructType = StructType(StructField("input", LongType) :: Nil)
 
  // 缓存区数据结构
  override def bufferSchema: StructType = StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
 
  // 聚合函数返回值数据结构
  override def dataType: DataType = DoubleType
 
  // 聚合函数是否是幂等的,即相同输入是否总是能得到相同输出
  override def deterministic: Boolean = true
 
  // 初始化缓冲区
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L
    buffer(1) = 0L
  }
 
  // 给聚合函数传入一条新数据进行处理
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    if (input.isNullAt(0)) return
    buffer(0) = buffer.getLong(0) + input.getLong(0)
    buffer(1) = buffer.getLong(1) + 1
  }
 
  // 合并聚合函数缓冲区
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
  }
 
  // 计算最终结果
  override def evaluate(buffer: Row): Any = buffer.getLong(0).toDouble / buffer.getLong(1)
 
}

然后注册并使用它:

package cc11001100.spark.sql.udaf
 
import org.apache.spark.sql.SparkSession
 
object SparkSqlUDAFDemo_001 {
 
  def main(args: Array[String]): Unit = {
 
    val spark = SparkSession.builder().master("local[*]").appName("SparkStudy").getOrCreate()
    spark.read.json("data/user").createOrReplaceTempView("v_user")
    spark.udf.register("u_avg", AverageUserDefinedAggregateFunction)
    // 将整张表看做是一个分组对求所有人的平均年龄
    spark.sql("select count(1) as count, u_avg(age) as avg_age from v_user").show()
    // 按照性别分组求平均年龄
    spark.sql("select sex, count(1) as count, u_avg(age) as avg_age from v_user group by sex").show()
 
  }
 
}

使用到的数据集:

{"id": 1001, "name": "foo", "sex": "man", "age": 20}
{"id": 1002, "name": "bar", "sex": "man", "age": 24}
{"id": 1003, "name": "baz", "sex": "man", "age": 18}
{"id": 1004, "name": "foo1", "sex": "woman", "age": 17}
{"id": 1005, "name": "bar2", "sex": "woman", "age": 19}
{"id": 1006, "name": "baz3", "sex": "woman", "age": 20}

运行结果:

image

UDAF和UDF的介绍_第3张图片

 

继承Aggregator

还有另一种方式就是继承Aggregator这个类,优点是可以带类型:

package cc11001100.spark.sql.udaf
 
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders}
 
/**
  * 计算平均值
  *
  */
object AverageAggregator extends Aggregator[User, Average, Double] {
 
  // 初始化buffer
  override def zero: Average = Average(0L, 0L)
 
  // 处理一条新的记录
  override def reduce(b: Average, a: User): Average = {
    b.sum += a.age
    b.count += 1L
    b
  }
 
  // 合并聚合buffer
  override def merge(b1: Average, b2: Average): Average = {
    b1.sum += b2.sum
    b1.count += b2.count
    b1
  }
 
  // 减少中间数据传输
  override def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
 
  override def bufferEncoder: Encoder[Average] = Encoders.product
 
  // 最终输出结果的类型
  override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
 
}
 
/**
  * 计算平均值过程中使用的Buffer
  *
  * @param sum
  * @param count
  */
case class Average(var sum: Long, var count: Long) {
}
 
case class User(id: Long, name: String, sex: String, age: Long) {
}

运行结果:

image

你可能感兴趣的:(spark)