常用的搜索有Dfs和Bfs。
Bfs的剪枝通常就是判重,因为一般Bfs寻找的是步数最少,重复的话必定不会在之前的情况前产生最优解。
深搜,它的进程近似一颗树(通常叫Dfs树)。
而剪枝就是一种生动的比喻:把不会产生答案的,或不必要的枝条“剪掉”。
剪枝的关键就在于剪枝的判断:什么枝该剪,什么枝不该剪,在什么地方减。
正确性,准确性,高效性。
常用的剪枝有:可行性剪枝、最优性剪枝、记忆化搜索、搜索顺序剪枝。
如果当前条件不合法就不再继续搜索,直接return。这是非常好理解的剪枝,搜索初学者都能轻松地掌握,而且也很好想。一般的搜索都会加上。
一般格式:
dfs(int x)
{
if(x>n)return;
if(!check1(x))return;
....
return;
}
如果当前条件所创造出的答案必定比之前的答案大,那么剩下的搜索就毫无必要,甚至可以剪掉。
我们利用某个函数估计出此时条件下答案的‘下界’,将它与已经推出的答案相比,如果不比当前答案小,就可以剪掉。
一般格式:
long long ans=987474477434487ll;
... Dfs(int x,...)
{
if(x... && ...){ans=....;return ...;}
if(check2(x)>=ans)return ...; //最优性剪枝
for(int i=1;...;++i)
{
vis[...]=1;
dfs(...);
vis[...]=0;
}
}
一般实现:在搜索取和最大值时,如果后面的全部取最大仍然不比当前答案大就可以返回。
在搜和最小时同理,可以预处理后缀最大/最小和进行快速查询。
记忆化搜索其实很像动态规划(DP)。
它的关键是:如果对于相同情况下必定答案相同,就可以把这个情况的答案值存储下来,以后再次搜索到这种情况时就可以直接调用。
还有就是不能搜出环来,不能互相依赖。
一般格式:
long long ans=987474477434487ll;
... Dfs(int x,...)
{
if(x... && ...){ans=....;return ...;}
if(vis[x]!=0)return f[x];vis[x]=1;
for(int i=1;...;++i)
{
vis[...]=1;
dfs(...);
vis[...]=0;
f[x]=...;
}
}
在一些迷宫题,网格题,或者其他搜索中可以贪心的题,搜索顺序显得十分重要。我经常听见有人说(我自己也说过):“从左边搜会T,从右边搜就A了”之类的语句。
其实在迷宫、网格类的题目中,以左上->右下为例,右下左上就明显比左上右下优秀。
在一些推断搜索题中,从已知信息最多的地方开始搜索显然更加优秀。
在一些题中,先搜某个值大的,再搜某个值小的(比如树的度数,产生答案的预计(A*)),速度明显会比乱搜更快。
搜索的复杂度明显讲不清,这种剪枝自然是能加就加。
例题 codevs1288 埃及分数
#include
#include
#include
#include
#define LL long long int
using namespace std;
LL a,b,depth,FLAG=1,zZ[101010],Ans[101010],Maxx=10101000;
LL gcd(LL a,LL b){return b>0?gcd(b,a%b):a;} //辗转相除法求最大公约数
void dfs(LL now,LL a,LL b,LL last,LL depth)
{
if(now==depth-1)
{
if(a!=1)return;
if(blast)
{
zZ[now+1]=b;FLAG=0;Maxx=b;
for(LL i=1;i<=now+1;++i){Ans[i]=zZ[i];}
}
return;
}
if(a*(last+1)>=b*(depth-now) || last>Maxx || a==0)return; //第一个是可行性剪枝,是个十字相乘式,建议移项看
for(LL i=last+1,K=(depth-now)*b/a;i
原文:https://www.cnblogs.com/fenghaoran/p/6391016.html