结构:数组+链表+红黑树
1.HashMap可以添加null类型的键值,并且可以保证正常的输出。(HashTable虽然添加是编译器不报错,但是获取Null的键时会报空指针异常)。
2.两个决定HashMap性能的重要参数:
initial capacity:初始容量,默认16。
load factor:负载因子,默认0.75.
负载因子(已经使用/总长度)决定当数组扩充的时机,这个0.75是均衡查找时间和空间占用所得的一个数值。如果比较小,比如0.5则数组使用了一半就开始扩容,则空间浪费;如果比较大,比如0.9则每一个数组内存放的元素又太多了,那么查找时间会比较长。
3.HashMap是线程不安全的。如果要保证并发情况下正确使用,那么可以使用 Map m = Collections.synchronizedMap(new HashMap(…));
4.迭代是快速失败的fail-fast。如果在迭代过程中HashMap结构发生变化,将抛出ConcurrentModificationException异常,只有使用迭代器本身的remove方法才不会出错,只能用来检查错误,他不能代替同步。
使用实例
变量:
数组默认初始容量:
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
数组最大容量:
static final int MAXIMUM_CAPACITY = 1 << 30;
负载因子:
static final float DEFAULT_LOAD_FACTOR = 0.75f;
链表转化为红黑树的阀值:
static final int TREEIFY_THRESHOLD = 8;
红黑树转化为链表的阀值:
static final int UNTREEIFY_THRESHOLD = 6;
树的最小容量:有一个扩容条件用到次参数
static final int MIN_TREEIFY_CAPACITY = 64;
hash算法:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
映射到数组下标:tab[i = (n - 1) & hash])
扩容时的拆分:e.hash & oldCap
[参考链接](https://www.cnblogs.com/liujinhong/p/6576543.html)
插入:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
第一次插入时扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
对应数组下标无数据,直接插入
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;相同的key则替换
else if (p instanceof TreeNode)
如果是树类型,按树的形式插入
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
否则插入链表最后
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
如果链表达到转化为树的阀值,则转化为树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
访问的回调操作LinkedHashMap实现了
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
如果数组使用达到阀值,扩容
resize();
插入的回调操作
afterNodeInsertion(evict);
return null;
}
扩容+转换:挺重要扩容中hash参考
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
扩容2倍:16-32
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
阀值两倍:12-24
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//第一次插入时:阀值12
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
//树类型--分散树
((TreeNode)e).split(this, newTab, j, oldCap);
else { // preserve order
链表的转移:e.hash & oldCap 根据第X位(扩容后幂数位),将链表分成两部分,一部分还是占据原来的数组位置,另一部分转移到 当前+原来数组长度的位置。
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
将链表转换为树的方法:
final void treeifyBin(Node[] tab, int hash) {
int n, index; Node e;
这里还有一个扩容判断,表的长度必须要大于64才扩容。也就是说当一个链表的长度大于8,但是数组长度还不到64那么应该先扩容,而不是先转化为树,因为树是比较占空间。
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode hd = null, tl = null;
do {
TreeNode p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
扩容时树的转换:多了树转链表的判断。拆分后两颗树的节点是不相同的,如果数量比较少就没必要作为树了。
final void split(HashMap map, Node[] tab, int index, int bit) {
TreeNode b = this;
// Relink into lo and hi lists, preserving order
TreeNode loHead = null, loTail = null;
TreeNode hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode e = b, next; e != null; e = next) {
next = (TreeNode)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
总结:除了理解Hash表的扩容时机,转换过程,很有必要理解几个hash处理过程。