- 【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等
十小大
超分辨率重建(理论+实战科研+应用)超分辨率重建人工智能图像处理深度学习计算机视觉图像超分pytorch
文章目录专栏简介专栏亮点适配人群相关说明关于答疑环境配置超分理解实现流程文章目录基础知识三个常用的SR框架数据集相关可解释性(论文中的可视化说明)图像超分(ImageSuper-Resolution)经典超分(ClassicalSR)任意尺度超分(Arbitrary-ScaleSR)高效/轻量化超分(Efficient/LightweightSR,ESR)盲超分/真实世界图像超分辨率(Blind/
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- CVPR 2024 图像、视频处理总汇(视频字幕、图像超分辨率、图像分类和压缩等)
点云SLAM
图形图像处理深度学习计算机视觉图像处理视频处理3DGSCVPR2024
1、Image/VideoCaptioning(图像/视频字幕)VisualFactChecker:EnablingHigh-FidelityDetailedCaptionGenerationPolos:MultimodalMetricLearningfromHumanFeedbackforImageCaptioning⭐codeprojectPanda-70M:Captioning70MVide
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- CVPR2025|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
图像处理与计算机视觉论文相关底层视觉计算机视觉算法CVPR2025图像超分辨率图像复原图像增强
CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)1.超分辨率(Super-Resolution)AdaptiveDropout:UnleashingDropoutacrossLayersforGeneralizableImageSuper-ResolutionADD:AGeneralAttribution-DrivenDataAugmentationFrameworkfor
- 探索深度学习中的图像超分辨率:SMFANet 模型解析
RockLiu@805
深度学习人工智能
探索深度学习中的图像超分辨率:SMFANet模型解析在现代计算机视觉中,图像超分辨率(Super-Resolution)是一个备受关注的研究领域。它的目标是将低分辨率的图像恢复为高分辨率的图像,同时保留或增强细节信息。近年来,基于深度学习的方法在这方面的研究取得了显著进展。今天,我们将一起探索一个轻量级、高效的超分辨率模型——SMFANet,并深入分析其实现细节。一、超分辨率技术的意义与挑战图像超
- 人工智能混合编程实践:Python ONNX FP16加速进行图像超分重建
FriendshipT
人工智能混合编程实践人工智能python开发语言超分辨率重建FP16onnx
人工智能混合编程实践:PythonONNXFP16加速进行图像超分重建前言相关介绍Python简介ONNX简介图像超分辨率重建简介应用场景前提条件实验环境项目结构使用PythonONNXFP16加速进行图像超分重建sr_py_infer_fp16.py参考文献前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、
- 产品推荐|一款具有单光子级探测能力的科学相机千眼狼Gloria 1605
gaosushexiangji
人工智能科技计算机视觉
在生命科学超分辨率成像、量子物理单光子探测、交叉领域单分子追踪等应用场景中,具有单光子级探测能力的科学相机是科学实验的关键设备。千眼狼Gloria1605采用16μm×16μm大像元尺寸设计,基于Gpixel科学级背照式CMOS芯片,集成千眼狼底层图像处理技术、超低噪声模拟电路设计技术、热管理与真空封装技术、智能读出与控制技术、高级校正与算法五大核心技术,具备捕捉微弱单光子信号的能力。依据EMVA
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- Real-ESRGAN-GUI 安装与配置完全指南
Real-ESRGAN-GUI安装与配置完全指南Real-ESRGAN-GUILovelyReal-ESRGAN/Real-CUGANGUIWrapper项目地址:https://gitcode.com/gh_mirrors/re/Real-ESRGAN-GUI项目基础介绍Real-ESRGAN-GUI是一个基于Real-ESRGAN的图像超分辨率增强工具的简易图形用户界面。该界面旨在让用户轻松地
- 轻量化图像超分新范式:残差注意力网络重构超分计算逻辑
CodePatentMaster
网络重构
轻量化图像超分新范式:残差注意力网络重构超分计算逻辑一、技术原理深度剖析痛点定位当前图像超分辨率技术面临三重挑战:显存黑洞:传统残差网络堆叠导致参数量指数级增长,移动端部署时显存占用超过500MB细节丢失:常规通道注意力机制在压缩过程中丢失高频纹理信息,PSNR指标下降超过1.2dB推理延迟:典型4倍超分模型在移动端GPU的推理时间超过300ms,难以满足实时视频处理需求实现路径专利CN20241
- 【图像超分】论文复现:轻量化超分 | 频域感知Transfomer模型FreqFormer的Pytorch源码复现,跑通源码,获得指标、模型复杂度、超分结果图,架构拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)深度学习计算机视觉图像处理超分辨率重建人工智能pythonpytorch
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FreqFormer源码,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果;
- 非盲图像超分辨率与盲图像超分辨率技术2025.6.5
mozun2020
IP1:图像处理计算机视觉人工智能超分辨率重建图像处理信号处理
本文详细介绍非盲图像超分辨率与盲图像超分辨率技术。主要内容如下:基本概念与问题定义:介绍图像超分辨率的基本概念,解释盲与非盲超分辨率的核心区别,并使用表格对比两种技术。非盲图像超分辨率:原理与方法:详细说明非盲超分辨率的技术原理,列举典型方法,并介绍电力设备红外图像处理等应用场景。盲图像超分辨率:挑战与技术路线:分析盲超分辨率面临的三大挑战,系统分类技术方法(显式/隐式建模),并介绍Real-ES
- 【图像超分】论文复现:轻量化超分 | FMEN的Pytorch源码复现,跑通源码,整合到EDSR-PyTorch中进行训练、重参数化、测试
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FMEN源码(只给了模型实现和权重),将FMEN整合到EDSR-PyTorch中进行训练和重参数化测试获
- 【Block总结】TAB,令牌聚合块|融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用
AI浩
Block总结人工智能计算机视觉
论文信息本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文连接:https://arxiv.org/pdf/2503.06896Github代码链接:https://github.
- 【深度学习】CAB:通道注意力模块
shanks66
各种深度学习模块深度学习人工智能
@[toc]CAB:通道注意力模块CAB:通道注意力模块CAB(ChannelAttentionBlock)是一种通道注意力模块,通常用于计算机视觉任务中,特别是在图像恢复、超分辨率、去噪等任务中。它的核心思想是通过学习通道之间的依赖关系,自适应地调整每个通道的特征响应,从而增强模型对重要特征的提取能力。CAB的核心思想通道注意力机制:通过对每个通道的特征进行全局池化,获取全局信息。使用全连接层(
- 智能光学计算成像技术与应用前沿会议通知
m0_75133639
光电光学成像全息成像光学光电光子学光电工程师生物医学工程
会议背景智能光学计算成像是人工智能与光学成像深度融合的前沿领域,通过深度学习、光学神经网络、超表面光学及量子光学等技术,显著推动成像技术的革新。当前研究热点包括:-深度学习赋能的成像技术:如高速多模光纤成像、神经渲染全息三维重建、超分辨率成像-先进光谱与计算成像:基于超表面和衍射光栅的高光谱信息获取、压缩感知成像、无透镜成像-端到端联合设计:融合可微光学模型与深度学习算法,实现硬件-软件协同优化会
- 深度学习中的卷积和反卷积
思绪漂移
深度学习人工智能
深度学习中的卷积和反卷积一、引言:为什么需要卷积和反卷积?在计算机视觉领域,卷积神经网络(CNN)通过卷积操作实现了平移不变性特征提取,而反卷积(TransposedConvolution)则作为图像重构的核心技术,广泛应用于图像分割、超分辨率重建、生成对抗网络(GAN)等场景。二者的核心差异在于:卷积:高维→低维(如224x224图像→7x7特征图)通过局部连接和权值共享显著减少参数量,实现高效
- 【PyTorch项目实战】超分RCAN:使用非常深的残差通道注意力网络实现图像超分辨率 —— (自研)解决了RCAN恢复图像的模糊性
胖墩会武术
深度学习PyTorch项目实战python残差网络resnet超分辨率重建RCAN
文章目录一、论文详解1.1、项目背景1.2、研究现状1.3、论文核心1.4、网络模型(RCAN,ResidualChannelAttentionNetworks)1.4.1、残差中的残差(RIR,ResidualInResidual):由G个残差组(RG)和1条长跳跃连接(LSC)组成;每个RG由B个残差通道注意力块(RCAB)和1条短跳跃连接(SSC)组成;每个RCAB由1个通道注意力(CA)和
- python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。
OICQQ67658008
python超分辨率重建算法
python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。文章目录1.安装依赖库2.创建主窗口`main_window.py`3.实现SRResNet逻辑`srresnet.py`4.实现SRGAN逻辑`srgan.py`1.安装依赖库2.创建登录界面`login_window.py`3.创建主窗口`main_window.py`4.运行
- 【前沿 热点 顶会】CVPR 2025 录用的与图像|视频恢复、抠图、超分辨率、3D生成有关的论文
平安顺遂事事如意
顶刊顶会论文合集音视频人工智能3d超分辨率重建图像恢复视频
MatAnyone:StableVideoMattingwithConsistentMemoryPropagation仅依赖于输入帧的无辅助的视频抠图方法通常难以处理复杂或模糊的背景。为了解决这个问题,我们提出了MatAnyone,这是一个为目标分配的视频抠图量身定制的强大框架。具体来说,基于基于内存的范式,我们通过区域自适应内存融合引入了一个一致的内存传播模块,该模块自适应地集成来自前一帧的内存
- 探索真实世界超分辨率:Real-World Super-Resolution
司莹嫣Maude
探索真实世界超分辨率:Real-WorldSuper-Resolutionreal-world-sr项目地址:https://gitcode.com/gh_mirrors/re/real-world-sr在图像处理领域,超分辨率(Super-Resolution)是一个备受关注的话题,其目标是将低分辨率图像提升至高分辨率,从而提高细节和清晰度。然而,传统的超分辨率方法在应对现实世界的复杂场景时往往
- 【论文阅读】人脸修复(face restoration ) 不同先验代表算法整理
qianx77
论文阅读工具使用论文阅读算法
转眼做人脸复原(facerestoration)算法也一段时间了,根据自己的记忆整理一下自己的一些看法,算作个人记录,当然如果有人愿意分享自己的看法也是极好的。先挂下文章链接,下一篇在写总结。一、前述人脸修复(facerestoration)任务,起源于人脸超分辨率(facesuperresolution),可以算是从超分出来的一个分支。作为图像低级任务(lowlevel)中的一个,主要目的就是在
- 【图像超分】论文复现:无处不在的双分支通道-空间特征聚合思想!DAT的Pytorch源码复现,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果,架构拆解与代码实现!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能计算机视觉深度学习图像处理python超分辨率重建
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DAT源码(DAT,DAT-2,DAT-S,DAT-light),获得与论文一致的PSNR/SSIM、P
- 【图像超分】论文复现:多级窗口增大感受野,线性空间映射降低复杂度!高效超分模型HiT-SR的Pytorch源码复现,获得与论文一致的指标和超分可视化结果,核心结构SCC详解!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理计算机视觉深度学习
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通HiT-SR源码(HiT-SIR,HiT-SNG,HiT-SRF),获得与论文一致的指标和超分可视化结果
- 深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器
程序员非鱼
深度学习基础知识深度学习人工智能pytorchPixelShufflepython
在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。PixelShuffle和PixelUnshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。为什么需要PixelShuffle和PixelUnshufflePixe
- ChatGPT-o3辅助学术大纲效果如何?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能智能写作DeepSeekAIWritePaper
目录1引言2背景综述2.1自动驾驶雷达感知2.2生成模型演进:从GAN到Diffusion3相关工作3.1雷达点云增强与超分辨率3.2扩散模型在数据增广中的应用4方法论4.1问题定义与总览4.2数据预处理与雷达→体素表示4.3潜在体素扩散网络(LVDM)架构4.4训练策略4.5推理加速与系统集成5实验设计5.1数据集5.2评价指标5.3对比基线5.4实现细节6结果与讨论6.1量化结果6.2定性可视
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_