- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 群体遗传分析(一)#学习笔记
kangroomoon
哈温的遗传平衡定律是基础,费、莱、霍的群体遗传学是数学基础和理论框架,木村资生的中性进化论深化了自然选择的概念。中性学说认为:分子水平上的遗传变异在很大程度上是中性的,变异程度主要由突变速率和有效群体大小决定。(通过观察值和理论值之间的差异性测验中性进化假说)群体遗传多态性与结构分析Locus:遗传座位,在群体中通常包含多个allele:等位基因,即遗传多态性。大多数的新突变是由于geneticd
- 几何分布的期望和方差公式推导_算法数学基础-统计学最基础之均值、方差、协方差、矩...
weixin_39848097
几何分布的期望和方差公式推导均值定理六个公式概率论方差公式
我们天天都可以接触很多随机现象,比如每天的天气不一样气温是我们最直接的感受,我们很难预测明天的精确问题,但是这些随机现象又体现出了一定的规律性。比如上海7月份平均35度左右,冬天的平均温度在5度左右。所以35、5这些数字体现了某种稳定性。所以除了前面几章中讲到的分布律和概率密度函数可以表征随机变量外,还可以用一组数字来表达随机变量的一般特性。这就是我们今天要讲到的随机变量的数字特征。通过对数字特征
- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 数学基础 -- 线性代数之矩阵正定性
sz66cm
线性代数矩阵
线性代数中的正定性正定性在线性代数中主要用于描述矩阵的特性,尤其是在二次型与优化问题中有重要应用。正定矩阵的定义对于一个n×nn\timesnn×n的对称矩阵AAA,其正定性可以通过以下条件来判断:正定矩阵:如果对于任意非零向量x∈Rnx\in\mathbb{R}^nx∈Rn,二次型xTAxx^TAxxTAx都是正的,即:xTAx>0∀x∈Rn,x≠0x^TAx>0\quad\forallx\in
- 想学java,需要什么基础?
吹来人间烟火
不需要什么基础,课程都是针对于零基础的同学,设计这个行业,本身入行门槛比较低,能力重于学历。真正科班出身的更是少数,大部分人都是通过找培训机构系统学习出来的,所以只要自己下定决心去学,就一定能学会的。另外,如果说普通人具备哪些能力可以更好地学习Java,那可以列出来三点。1、简单的英语读写能力;2、一定的数学基础;3、一定的计算机基础操作能力。Java是一门面向对象地编程语言,吸收了C++语言的各
- 数学基础 -- 线性代数之酉矩阵
sz66cm
量子计算线性代数
酉矩阵(UnitaryMatrix)酉矩阵是线性代数中一种重要的矩阵类型,特别在量子力学和信号处理等领域有广泛的应用。以下是酉矩阵的定义、性质以及使用和计算的例子。1.定义酉矩阵是一个复矩阵UUU,满足以下条件:U†U=UU†=IU^{\dagger}U=UU^{\dagger}=IU†U=UU†=I其中:U†U^{\dagger}U†是矩阵UUU的共轭转置矩阵,即UUU的转置矩阵再取元素的共轭。
- 深度学习奥秘解锁:AI大模型技能提升指南
AGI大模型老王
人工智能深度学习语言模型算法大模型AI大模型
文章目录每日一句正能量前言AI大模型学习的理论基础AI大模型的训练与优化AI大模型在特定领域的应用AI大模型学习的伦理与社会影响未来发展趋势与挑战后记**前言**随着人工智能技术的快速发展,AI大模型学习正成为一项备受关注的研究领域。为了提高模型的准确性和效率,研究者们需要具备深厚的数学基础和编程能力,并对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习正为人类的生活和工
- 数学基础 -- 线性代数之伴随矩阵
sz66cm
线性代数矩阵
伴随矩阵1.代数余子式首先我们需要理解什么是代数余子式。对于一个n×nn\timesnn×n的方阵AAA,代数余子式MijM_{ij}Mij是指从矩阵AAA中删除第iii行和第jjj列后,剩下的子矩阵的行列式。假设有一个3×33\times33×3的矩阵:A=(a11a12a13a21a22a23a31a32a33)A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 【ShuQiHere】从零开始实现逻辑回归:深入理解反向传播与梯度下降
ShuQiHere
代码武士的机器学习秘传逻辑回归算法机器学习
【ShuQiHere】逻辑回归是机器学习中一个经典的分类算法,尽管它的名字中带有“回归”,但它的主要用途是处理二分类问题。逻辑回归通过一个逻辑函数(Sigmoid函数)将输入特征映射到一个概率值上,然后根据这个概率值进行分类。本文将带你从零开始一步步实现逻辑回归,并深入探讨背后的核心算法——反向传播与梯度下降。逻辑回归的数学基础逻辑回归的目标是找到一个逻辑函数,能够将输入特征映射到一个(0,1)之
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 【ShuQiHere】《机器学习的进化史『上』:从数学模型到智能算法的百年征程》
ShuQiHere
机器学习人工智能
【ShuQiHere】引言:概述机器学习的演进机器学习的发展史是一段从数学基础到智能算法的演进历程。从19世纪的数学探索,到20世纪的计算革命,再到21世纪的智能算法应用,机器学习模型的演化贯穿了科学进步的每个重要阶段。这篇博客将系统回顾这些模型的历史演进,展示它们之间的联系,并探讨其在现代应用中的重要性。线性回归:机器学习的起点背景故事:1805年的法国,年轻的数学家Adrien-MarieLe
- 数学基础 -- 线性代数之增广矩阵
sz66cm
线性代数机器学习
增广矩阵增广矩阵(AugmentedMatrix)是在求解线性方程组时常用的工具。它将线性方程组的系数矩阵与常数项合并在一起,形成一个扩展的矩阵,从而便于使用矩阵操作方法求解方程组。定义假设我们有一个线性方程组:a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋮am1x1+am2x2+⋯+amnxn=bm\begin{aligned}a_{11}x_1+a_
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 数学基础 -- 线性代数之矩阵的可逆性
sz66cm
线性代数矩阵机器学习
矩阵的可逆性1.矩阵可逆的定义对于一个n×nn\timesnn×n的方阵AAA,如果存在一个矩阵BBB使得:A×B=B×A=InA\timesB=B\timesA=I_nA×B=B×A=In其中InI_nIn是n×nn\timesnn×n的单位矩阵(对角线上全为1,其他位置全为0),那么矩阵AAA是可逆的,并称矩阵BBB是矩阵AAA的逆矩阵,记作A−1A^{-1}A−1。2.矩阵不可逆的定义如果对
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 数学基础 -- 线性代数之行列式不变性推导
sz66cm
线性代数
行列式不变性的推导我们要证明:给矩阵的一行(或列)加上另一行(或列)的倍数,这种操作不会改变行列式的值。问题描述假设我们有一个矩阵AAA,其大小为3×33\times33×3,如果我们将其第1行加上第2行的倍数,得到新的矩阵A′A'A′。我们需要证明矩阵AAA的行列式和矩阵A′A'A′的行列式是相等的。给定矩阵AAA如下:A=(a11a12a13a21a22a23a31a32a33)A=\begi
- 数学基础(四)
几两春秋梦_
数学基础算法人工智能机器学习
一、特征值与特征向量特征空间:特征向量的应用:特征值表达了重要程度且和特征向量所对应,那么特征值大的就是主要信息了,基于这点我们可以提供各种有价值的信息。二、SVD矩阵分解基变换:特征值分解:SVD:离散型随机变量概率函数(概率质量函数):连续型随机变量似然函数
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- 2018-02-19
471503Liwufeng
四十岁之后就经常算不清楚自己多大岁数,到底44还是45或者46真的不能不假思索脱口而出。是小学数学基础没打好,还是心理学上说的“可以回避”?所以今天记上一笔,2018年2月19日,45周岁。中年人的生日我相信没人由衷想为自己又长一岁而庆贺
- 计算机等级考试:信息安全技术 知识点二
ting_liang
计算机网络
1、信息技术的飞速发展,对人类社会产生了重要影响,其主流是积极的,但也客观存在一些负面影响,这些负面影响有:信息泛滥、信息污染、信息犯罪。2、1949年,香农发表了著名的《保密系统的通信理论》的论文,把密码学置于坚实的数学基础上,标志着密码学作为一门学科的形成。3、数字签名的过程使用的是签名者的私有密钥,验证数字签名时,使用的是签名者的公有密钥。4、已知最早的代换密码是由JuliusCaesar发
- 数学分析视频+书籍等
dllglvzhenfeng
计算机考研机试创新程序猿的数学人工智能算法信奥青少年趣味编程数学分析
数学分析(数学基础分支)数学分析(数学基础分支)_百度百科《数学分析(一)》专题《数学分析(一)》专题_哔哩哔哩_bilibili北京某高校《数学分析(二)》:第一讲~第五讲北京某高校《数学分析(二)》:第一讲~第五讲_哔哩哔哩_bilibili北京某高校《数学分析(二)》:第六讲~第八讲(未完待续)北京某高校《数学分析(二)》:第六讲~第八讲_哔哩哔哩_bilibili北京某高校《微观数学》之《
- 【人工智能学习思维脉络导图】
AK@
人工智能人工智能学习
曾梦想执剑走天涯,我是程序猿【AK】目录知识图谱1.基础知识2.人工智能核心概念3.实践与应用4.持续学习与进展5.挑战与自我提升6.人脉网络知识图谱人工智能学习思维脉络导图1.基础知识计算机科学基础数学基础(线性代数、微积分、概率论和统计学)编程语言(Python、R等)2.人工智能核心概念机器学习监督学习无监督学习强化学习深度学习神经网络卷积神经网络(CNN)循环神经网络(RNN)自然语言处理
- 智力题还是水有毒 (智力唤醒、简单代码、公平性)
BABYMISS
前言:群里发现一个很有意思的问题一、智力题??!有1000瓶水,其中有一瓶有毒,小白鼠只要尝一点带毒的水24小时内就会死亡,至少要多少只小白鼠才能在24小时内鉴别出哪瓶水有毒?【题目肯定经不起吃瓜大众的推敲,我们还是按出题人的思路来!】二、思路对不起,刚开始跑偏了。自诩数学基础好、生活经验丰富的我,思绪飘过二叉树、布隆过滤器,在奥卡姆剃刀指引下,最终回归最基础的二进制(如果是1024瓶水,保证不跑
- 小学奥数全套试卷百度云资源,pdf可打印电子版地址更新
全网优惠分享君
奥数,全称为奥林匹克数学竞赛,是一项极富挑战性的数学竞赛活动。它旨在发现和培养数学人才,提高他们的数学水平,并为国家培养出优秀的数学后备力量。在奥数竞赛中,学生需要掌握扎实的数学基础,灵活运用数学知识,解决各种复杂的数学问题。为了帮助小学生更好地学习奥数,我们整理了一份小学奥数全套试卷百度云资源,pdf可打印电子版。这份资源包含了小学奥数各年级的试卷,题型全面,难度适中,适合小学生练习和提高自己的
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少