[转]架构必备:Rate limiting 的作用和常见方式

转载文章,原文地址:https://blog.eood.cn/rate-limiting

 

Rate limiting 在 Web 架构中非常重要,是互联网架构可靠性保证重要的一个方面。

从最终用户访问安全的角度看,设想有人想暴力碰撞网站的用户密码;或者有人攻击某个很耗费资源的接口;或者有人想从某个接口大量抓取数据。大部分人都知道应该增加 Rate limiting,做请求频率限制。从安全角度,这个可能也是大部分能想到,但不一定去做的薄弱环节。

从整个架构的稳定性角度看,一般 SOA 架构的每个接口的有限资源的情况下,所能提供的单位时间服务能力是有限的。假如超过服务能力,一般会造成整个接口服务停顿,或者应用 Crash,或者带来连锁反应,将延迟传递给服务调用方造成整个系统的服务能力丧失。有必要在服务能力超限的情况下 Fail Fast。

另外,根据排队论,由于 API 接口服务具有延迟随着请求量提升迅速提升的特点,为了保证 SLA 的低延迟,需要控制单位时间的请求量。这也是 Little’s law 所说的。

[转]架构必备:Rate limiting 的作用和常见方式_第1张图片
 还有,公开 API 接口服务,Rate limiting 应该是一个必备的功能,否则公开的接口不知道哪一天就会被服务调用方有意无意的打垮。

所以,提供资源能够支撑的服务,将过载请求快速抛弃对整个系统架构的稳定性非常重要。这就要求在应用层实现 Rate limiting 限制。

常见的 Rate limiting 的实现方式

Proxy 层的实现,针对部分 URL 或者 API 接口进行访问频率限制

Nginx 模块

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

server {
    location /search/ {
        limit_req zone=one burst=5;
    }

 详细参见:ngx_http_limit_req_module

Haproxy 提供的功能

详细参见:Haproxy Rate limit 模块

Java、Scala JVM 系应用层实现

Google Guava 提供了一个 RateLimiter 实现。使用方式简单明了,在自己的应用中简单封装即可,放到 HTTP 服务或者其他逻辑接口调用的前端。

final RateLimiter rateLimiter = RateLimiter.create(2.0); // rate is "2 permits per second"
  void submitTasks(List tasks, Executor executor) {
    for (Runnable task : tasks) {
      rateLimiter.acquire(); // may wait
      executor.execute(task);
    }
  }

 详细参见:Google Guava RateLimiter

基于 Redis 功能的实现

这个在 Redis 官方文档有非常详细的实现。一般适用于所有类型的应用,比如 PHP、Python 等等。Redis 的实现方式可以支持分布式服务的访问频率的集中控制。Redis 的频率限制实现方式还适用于在应用中无法状态保存状态的场景。

参见:Redis INCR rate limiter

你可能感兴趣的:(技术架构)