spark安装与使用(入门)

安装环境: Ubuntu sever版 ,java ,scala,

一:在linux下安装java环境(自行安装jdk)

二:安装Scala2.9.3

$ tar -zxf scala-2.9.3.tgz
$ sudo mv scala-2.9.3 /usr/lib
$ sudo vim /etc/profile
# add the following lines at the end
export SCALA_HOME=/usr/lib/scala-2.9.3
export PATH=$PATH:$SCALA_HOME/bin
# save and exit vim
#make the bash profile take effect immediately
source /etc/profile
# test
$ scala -version

三:安装spark

从官网下载最新版本的spark,截止目前最新版的是1.5.1.下载地址:http://spark.apache.org/downloads.html

记住选择预编译好的文件下载,选择Pre-build for Hadoop 2.6 and later,下载的文件为spark-1.5.1-bin-hadoop2.6.tgz

解压

$ tar -zxf spark-1.5.1-bin-hadoop2.6.tgz

设置SPARK_EXAMPLES_JAR 环境变量

$ vim ~/.bash_profile
# add the following lines at the end
export SPARK_EXAMPLES_JAR=$HOME/spark-0.7.2/examples/target/scala-2.9.3/spark-examples_2.9.3-0.7.2.jar
# save and exit vim
#make the bash profile take effect immediately
$ source /etc/profile

这一步其实最关键,很不幸的是,官方文档和网上的博客,都没有提及这一点。我是偶然看到了这两篇帖子,Running SparkPi, Null pointer exception when running ./run spark.examples.SparkPi local,才补上了这一步,之前死活都无法运行SparkPi

(可选)设置 SPARK_HOME环境变量,并将SPARK_HOME/bin加入PATH

$ vim ~/.bash_profile
# add the following lines at the end
export SPARK_HOME=$HOME/spark-0.7.2
export PATH=$PATH:$SPARK_HOME/bin
# save and exit vim
#make the bash profile take effect immediately
$ source /etc/profile
后来安装以上两步感觉没用,但还是照做了。spark和hadoop是一样的,解压即可使用。


单机运行spark

四:Spark配置

配置Spark环境变量

cd $SPARK_HOME/conf 
cp spark-env.sh.template spark-env.sh

vi spark-env.sh 添加以下内容:

export JAVA_HOME=/usr/local/java-1.7.0
export HADOOP_HOME=/opt/hadoop-2.3.0-cdh5.0.0
export HADOOP_CONF_DIR=/etc/hadoop/conf
export SCALA_HOME=/usr/local/scala-2.11.4
export SPARK_HOME=/home/lxw1234/spark-1.3.1-bin-hadoop2.3
export SPARK_MASTER_IP=127.0.0.1
export SPARK_MASTER_PORT=7077
export SPARK_MASTER_WEBUI_PORT=8099
 
export SPARK_WORKER_CORES=3 //每个Worker使用的CPU核数
export SPARK_WORKER_INSTANCES=1 //每个Slave中启动几个Worker实例
export SPARK_WORKER_MEMORY=10G //每个Worker使用多大的内存
export SPARK_WORKER_WEBUI_PORT=8081 //Worker的WebUI端口号
export SPARK_EXECUTOR_CORES=1 //每个Executor使用使用的核数
export SPARK_EXECUTOR_MEMORY=1G //每个Executor使用的内存
 
export SPARK_CLASSPATH=/opt/hadoop-lzo/current/hadoop-lzo.jar //由于要用到lzo,因此需要配置
export SPARK_CLASSPATH=$SPARK_CLASSPATH:$CLASSPATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$HADOOP_HOME/lib/native
  • 配置Slave

cp slaves.template slaves 
vi slaves 添加以下内容: 
localhost

五、配置免密码ssh登陆

因为Master和Slave处于一台机器,因此配置本机到本机的免密码ssh登陆,如有其他Slave,都需要配置Master到Slave的无密码ssh登陆。

cd ~/
ssh-keygen (一路回车)
cd .ssh/
cat id_rsa.pub >> authorized_keys
chmod 600 authorized_keys

六、启动Spark Master

cd $SPARK_HOME/sbin/ 
./start-master.sh

启动日志位于 $SPARK_HOME/logs/目录下,正常启动的日志如下:

15/06/05 14:54:16 INFO server.AbstractConnector: Started SelectChannelConnector@localhost:6066 
15/06/05 14:54:16 INFO util.Utils: Successfully started service on port 6066. 
15/06/05 14:54:16 INFO rest.StandaloneRestServer: Started REST server for submitting applications on port 6066 
15/06/05 14:54:16 INFO master.Master: Starting Spark master at spark://127.0.0.1:7077 
15/06/05 14:54:16 INFO master.Master: Running Spark version 1.3.1 
15/06/05 14:54:16 INFO server.Server: jetty-8.y.z-SNAPSHOT 
15/06/05 14:54:16 INFO server.AbstractConnector: Started [email protected]:8099 
15/06/05 14:54:16 INFO util.Utils: Successfully started service ‘MasterUI’ on port 8099. 
15/06/05 14:54:16 INFO ui.MasterWebUI: Started MasterWebUI at http://127.1.1.1:8099 
15/06/05 14:54:16 INFO master.Master: I have been elected leader! New state: ALIVE

七、启动Spark Slave


cd $SPARK_HOME/sbin/ 
./start-slaves.sh 


会根据$SPARK_HOME/conf/slaves文件中配置的主机,逐个ssh过去,启动Spark Worker

成功启动后,在WebUI界面上可以看到,已经有Worker注册上来了,如图:


在浏览器输入:http://192.168.1.84:8080/   (前面为master的ip地址)



八、简单小实例(统计文件中出现最多的50个单词)

在bin目录下直接运行./spark-shell

hadoop@Master:/usr/local/spark-1.5.1-bin-hadoop2.6/bin$ ./spark-shell
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's repl log4j profile: org/apache/spark/log4j-defaults-repl.properties
To adjust logging level use sc.setLogLevel("INFO")
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.5.1
      /_/

Using Scala version 2.10.4 (OpenJDK 64-Bit Server VM, Java 1.7.0_79)
Type in expressions to have them evaluated.
Type :help for more information.
15/10/13 19:12:16 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set.
Spark context available as sc.
15/10/13 19:12:18 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
15/10/13 19:12:19 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
15/10/13 19:12:35 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
15/10/13 19:12:35 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
15/10/13 19:12:39 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/10/13 19:12:39 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
15/10/13 19:12:39 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
SQL context available as sqlContext.


没注意这么多warn是怎么回事,接着进入spark-shell,依次输入:

var srcFile = sc.textFile("/usr/local/kern.log")

var a = srcFile.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_)

a.map(word=>(word._2,word._1)).sortByKey(false).map(word=>(word._2,word._1)).take(50).foreach(println)

结果打印在终端:



在4040端口可查看job的情况 http://192.168.1.84:4040/jobs/



八、Spark Java programming (Spark and Spark Streaming)

1:spark批处理:统计一个文件中出现a和出现b的单词数:SimpleApp.java
package org.apache.eagle.spark_streaming_kafka;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;

public class SimpleApp {

	public static void main(String[] args) {
		String logFile = "/var/log/boot.log"; // Should be some file on your system  
	    SparkConf conf = new SparkConf().setAppName("Simple Application");  
	    JavaSparkContext sc = new JavaSparkContext(conf);  
	    JavaRDD logData = sc.textFile(logFile).cache();  
	  
	    long numAs = logData.filter(new Function() {  
	      /**
			 * 
			 */
			private static final long serialVersionUID = 1L;

		public Boolean call(String s) { return s.contains("a"); }  
	    }).count();  
	  
	    long numBs = logData.filter(new Function() {  
	        
	  
	    public Boolean call(String s) { return s.contains("b"); }  
	    }).count();  
	  
	    System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);  

	}

}

2:Spark Streaming, 读取kafka数据做单词统计。
package org.apache.eagle.spark_streaming_kafka;

import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;

import com.google.common.collect.Lists;

import scala.Tuple2;


/**
 * spark-streaming-kafka
 *
 */
public class JavaKafkaWordCount 
{
	private static final Pattern SPACE = Pattern.compile(" ");

	  private JavaKafkaWordCount() {
	  }
	  
    public static void main( String[] args )
    {
    	
    	String zkQuorum = "10.64.255.161";  
        String group = "test-consumer-group";  
    	SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaWordCount");
    	// Create the context with 2 seconds batch size
        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
        Map topicMap = new HashMap();
        topicMap.put("noise",1);
        JavaPairReceiverInputDStream messages =
        		KafkaUtils.createStream(jssc, zkQuorum, group, topicMap);;
        
        JavaDStream lines = messages.map(new Function, String>() {
            public String call(Tuple2 tuple2) {
              return tuple2._2();
            }
          });
        JavaDStream words = lines.flatMap(new FlatMapFunction() {
            public Iterable call(String x) {
              return Lists.newArrayList(SPACE.split(x));
            }
          });

          JavaPairDStream wordCounts = words.mapToPair(
            new PairFunction() {
              public Tuple2 call(String s) {
                return new Tuple2(s, 1);
              }
            }).reduceByKey(new Function2() {
              public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
              }
            });

          wordCounts.print();
          jssc.start();
          jssc.awaitTermination();
    }
}

注意几点:
    1:环境:要确保spark在本机中正确安装,安装步骤如上所述。zookeeper集群和kafka集群要安装好,kafka的topic要新建好。
    2:之前运行遇到找不到jar的情况(kafkaUtil),原因没有把所有依赖的jar包都打包到最终的jar包里去。应在pom.xml中添加一下:

    src/main/java
    src/test/java
    
      
      
        maven-assembly-plugin
        
          
            jar-with-dependencies
          
          
            
              org.apache.eagle.spark_streaming_kafka.JavaKafkaWordCount
            
          
        
        
          
            make-assembly
            package
            
              single
            
          
        
      
    
 
     将所需的jar包一同打包,所以生成的文件会很大。
     3:如何提交任务?spark和spark streaming提交的方式都一样,用$SPARK_HOME/bin/soark-submit脚本提交,进入bin目录下,
           以下是spark streaming任务提交,具体如下:
./spark-submit  --master local[8] /home/zqin/workspace/spark-streaming-kafka/target/spark-streaming-kafka-0.0.1-SNAPSHOT-jar-with-dependencies.jar

由于在pom.xml中指明了入口类,因此不用加--class,如果没有指明,在命令中要用--class 指明入口。

          以下是spark任务提交:
./spark-submit  --class org.apache.eagle.spark_streaming_kafka.SimpleApp --master local[8] /home/zqin/workspace/spark-streaming-kafka/target/spark-streaming-kafka-0.0.1-SNAPSHOT-jar-with-dependencies.jar
          需要指明程序main入口。
       4:在运行spark streaming时,控制台满屏日志,不好查看结果, 在Spark的conf目录下,把log4j.properties.template修改为log4j.properties,把log4j.rootCategory=INFO, console改为log4j.rootCategory=WARN, console即可抑制Spark把INFO级别的日志打到控制台上。如果要显示全面的信息,则把INFO改为DEBUG



九、关闭spark

在spark目录下输入:sbin/stop-all.sh

你可能感兴趣的:(Hadoop)