图像修复之Exemplar-Based Inpainting

原理参考 https://blog.csdn.net/frank_xu_0818/article/details/18842729
代码参考 https://github.com/sooham/inpainting

  • 本文简单解读下 Criminisi 等人论文"Region Filling and Object Removal by Exemplar-Based Inpainting.2004,TIP"中的基于纹理合成的图像补全方法
  • 该方法结合了"texture synthesis"(通过纹理样图生成大图[1])与"inpainting"(基于微分方程填充图像中的细缝[2]),很好地实现了大的目标物体的移除.
  • 将图像分为已知区域(source region)和待填充或移除区域(target region),移除从target region的边界开始,以边界点p为中心,设置块的大小,形成块(图b),然后在已知区域中根据匹配准则找到相似的块,如图c以q’及q"为中心的两个块,最后选取最佳匹配的块进行填充(图d).

图像修复之Exemplar-Based Inpainting_第1张图片

算法主要由计算优先级,搜索及复制三个部分组成:

1)优先级决定了移除顺序,保证图像中的线性结构传播,目标边界连通;

2)搜索即根据纹理相似距离(平方差距离和SSD)在已知区域中找到最佳匹配块;

3)复制即将最佳匹配块复制到对应的目标区域位置

图像修复之Exemplar-Based Inpainting_第2张图片

优先级计算

图像修复之Exemplar-Based Inpainting_第3张图片
图像修复之Exemplar-Based Inpainting_第4张图片

图像修复之Exemplar-Based Inpainting_第5张图片

代码实现:

//  主函数
int main(int argc, char** argv) {
    // --------------- read filename strings ------------------
    std::string colorFilename, maskFilename;
    
    if (argc == 3) {
        colorFilename = argv[1];
        maskFilename = argv[2];
    } else {
        std::cerr << "Usage: ./inpainting colorImageFile maskImageFile" << std::endl;
        return -1;
    }
    
    // ---------------- read the images ------------------------
    // colorMat     - color picture + border
    // maskMat      - mask picture + border
    // grayMat      - gray picture + border
    cv::Mat colorMat, maskMat, grayMat;
    loadInpaintingImages(
                         colorFilename,
                         maskFilename,
                         colorMat,
                         maskMat,
                         grayMat
                         );
    
    // confidenceMat - confidence picture + border
    cv::Mat confidenceMat;
    maskMat.convertTo(confidenceMat, CV_32F);
    confidenceMat /= 255.0f;
    
    // add borders around maskMat and confidenceMat
    cv::copyMakeBorder(maskMat, maskMat,
                       RADIUS, RADIUS, RADIUS, RADIUS,
                       cv::BORDER_CONSTANT, 255);
    cv::copyMakeBorder(confidenceMat, confidenceMat,
                       RADIUS, RADIUS, RADIUS, RADIUS,
                       cv::BORDER_CONSTANT, 0.0001f);
    
    // ---------------- start the algorithm -----------------
    
    contours_t contours;            // mask contours
    hierarchy_t hierarchy;          // contours hierarchy
    
    
    // priorityMat - priority values for all contour points + border
    cv::Mat priorityMat(
                        confidenceMat.size(),
                        CV_32FC1
                        );  // priority value matrix for each contour point
    
    assert(
           colorMat.size() == grayMat.size() &&
           colorMat.size() == confidenceMat.size() &&
           colorMat.size() == maskMat.size()
           );
    
    cv::Point psiHatP;          // psiHatP - point of highest confidence
    
    cv::Mat psiHatPColor;       // color patch around psiHatP
    
    cv::Mat psiHatPConfidence;  // confidence patch around psiHatP
    double confidence;          // confidence of psiHatPConfidence
    
    cv::Point psiHatQ;          // psiHatQ - point of closest patch
    
    cv::Mat result;             // holds result from template matching
    cv::Mat erodedMask;         // eroded mask
    
    cv::Mat templateMask;       // mask for template match (3 channel)
    
    // eroded mask is used to ensure that psiHatQ is not overlapping with target
    cv::erode(maskMat, erodedMask, cv::Mat(), cv::Point(-1, -1), RADIUS);
    
    cv::Mat drawMat;
    
    
    // main loop
    const size_t area = maskMat.total();
    
    while (cv::countNonZero(maskMat) != area)   // end when target is filled
    {
        // set priority matrix to -.1, lower than 0 so that border area is never selected
        priorityMat.setTo(-0.1f);
        
        // get the contours of mask
        getContours((maskMat == 0), contours, hierarchy);
        
        if (DEBUG) {
            drawMat = colorMat.clone();
        }
        
        // compute the priority for all contour points
        computePriority(contours, grayMat, confidenceMat, priorityMat);
        
        // get the patch with the greatest priority 知道
        cv::minMaxLoc(priorityMat, NULL, NULL, NULL, &psiHatP);
        psiHatPColor = getPatch(colorMat, psiHatP);
        psiHatPConfidence = getPatch(confidenceMat, psiHatP);
        
        cv::Mat confInv = (psiHatPConfidence != 0.0f);
        confInv.convertTo(confInv, CV_32F);
        confInv /= 255.0f;
        // get the patch in source with least distance to psiHatPColor wrt source of psiHatP
        cv::Mat mergeArrays[3] = {confInv, confInv, confInv};
        cv::merge(mergeArrays, 3, templateMask);
        result = computeSSD(psiHatPColor, colorMat, templateMask);
        
        // set all target regions to 1.1, which is over the maximum value possilbe
        // from SSD
        result.setTo(1.1f, erodedMask == 0);
        // get minimum point of SSD between psiHatPColor and colorMat
        cv::minMaxLoc(result, NULL, NULL, &psiHatQ);
        
        assert(psiHatQ != psiHatP);
        
        if (DEBUG) {
        cv::rectangle(drawMat, psiHatP - cv::Point(RADIUS, RADIUS), psiHatP + cv::Point(RADIUS+1, RADIUS+1), cv::Scalar(255, 0, 0));
        cv::rectangle(drawMat, psiHatQ - cv::Point(RADIUS, RADIUS), psiHatQ + cv::Point(RADIUS+1, RADIUS+1), cv::Scalar(0, 0, 255));
        showMat("red - psiHatQ", drawMat);
        }
        // updates
        // copy from psiHatQ to psiHatP for each colorspace
        transferPatch(psiHatQ, psiHatP, grayMat, (maskMat == 0));
        transferPatch(psiHatQ, psiHatP, colorMat, (maskMat == 0));
        
        // fill in confidenceMat with confidences C(pixel) = C(psiHatP)
        confidence = computeConfidence(psiHatPConfidence);
        assert(0 <= confidence && confidence <= 1.0f);
        // update confidence
        psiHatPConfidence.setTo(confidence, (psiHatPConfidence == 0.0f));
        // update maskMat
        maskMat = (confidenceMat != 0.0f);
    }
    
    showMat("final result", colorMat, 0);
    return 0;
}

你可能感兴趣的:([OpenCV笔记])