07、int 和 Integer 有什么区别?谈谈 Integer 的值缓存范围

目录

典型回答

注意事项

知识扩展

1. 理解自动装箱、拆箱

2. 源码分析

3. 原始类型线程安全

4.Java 原始数据类型和引用类型局限性


典型回答

int是 Java 的 8 个原始数据类型(Primitive Types,boolean(1/8字节)、byte(1字节) 、short(2字节)、int(4字节)、long(8字节)、float(4字节)、double(8字节)、char(2字节,一个字符能存储一个中文汉字))之一。Java 语言虽然号称一切都是对象,但原始数据类型是例外。

Integer 是 int 对应的包装类,它有一个 int 类型的字段存储数据,并且提供了基本操作,比如数学运算、int 和字符串之间转换等。

int的默认值为0,而Integer的默认值为null,即Integer可以区分出未赋值和值为0的区别,int则无法表达出未赋值的情况,例如,要想表达出没有参加考试和考试成绩为0的区别,则只能使用Integer。因为int默认值为0,在JSP开发中,用el表达式在文本框中显示结果为0,所以int不适合作为web层的表单数据的类型。

JDK1.5引入了自动装箱与自动拆箱功能,Java可根据上下文,实现int/Integer,double/Double,boolean/Boolean等基本类型与相应对象之间的自动转换,为开发过程带来极大便利。

最常用的是通过new方法构建Integer对象。但是,基于大部分数据操作都是集中在有限的、较小的数值范围,在JDK1.5 中新增了静态工厂方法 valueOf,将int值为-128 到 127 之间的Integer对象进行缓存,在调用时候直接从缓存中获取,进而节省内存提升性能,也就是说使用该方法后,如果两个对象的int值相同且落在缓存值范围内,那么这个两个对象就是同一个对象;当值较小且频繁使用时,推荐优先使用整型池方法(时间与空间性能俱佳)。

 

注意事项

  1. 基本类型均具有取值范围,在大数*大数的时候,有可能会出现越界的情况。
  2. 基本类型转换时,使用声明的方式。例:long result= 1234567890 * 24 * 365;结果值一定不会是你所期望的那个值,因为1234567890 * 24已经超过了int的范围,如果修改为:long result= 1234567890L * 24 * 365;就正常了。
  3. 慎用基本类型处理货币存储。如采用double常会带来差距,常采用BigDecimal、整型(如果要精确表示分,可将值扩大100倍转化为整型)解决该问题。
  4. 优先使用基本类型。原则上,建议避免无意中的装箱、拆箱行为,尤其是在性能敏感的场合,
  5. 如果有线程安全的计算需要,建议考虑使用类型AtomicInteger、AtomicLong 这样的线程安全类。部分比较宽的基本数据类型,比如 float、double,甚至不能保证更新操作的原子性,可能出现程序读取到只更新了一半数据位的数值。

 

知识扩展

1. 理解自动装箱、拆箱

自动装箱实际上算是一种语法糖。什么是语法糖?可以简单理解为 Java 平台为我们自动进行了一些转换,保证不同的写法在运行时等价,它们发生在编译阶段,也就是生成的字节码是一致的。

像前面提到的整数,javac 替我们自动把装箱转换为 Integer.valueOf(),把拆箱替换为 Integer.intValue(),这似乎这也顺道回答了另一个问题,既然调用的是 Integer.valueOf,自然能够得到缓存的好处啊。

如何程序化的验证上面的结论呢?

你可以写一段简单的程序包含下面两句代码,然后反编译一下。当然,这是一种从表现倒推的方法,大多数情况下,我们还是直接参考规范文档会更加可靠,毕竟软件承诺的是遵循规范,而不是保持当前行为。

Integer integer = 1;
int unboxing = integer ++;

反编译输出:

1: invokestatic  #2                  // Method
java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
8: invokevirtual #3                  // Method
java/lang/Integer.intValue:()I

这种缓存机制并不是只有 Integer 才有,同样存在于其他的一些包装类,比如:

  • Boolean,缓存了 true/false 对应实例,确切说,只会返回两个常量实例 Boolean.TRUE/FALSE。
  • Short,同样是缓存了 -128 到 127 之间的数值。
  • Byte,数值有限,所以全部都被缓存。
  • Character,缓存范围 '\u0000' 到 '\u007F'。

自动装箱 / 自动拆箱似乎很酷,在编程实践中,有什么需要注意的吗?

原则上,建议避免无意中的装箱、拆箱行为,尤其是在性能敏感的场合,创建 10 万个 Java 对象和 10 万个整数的开销可不是一个数量级的,不管是内存使用还是处理速度,光是对象头的空间占用就已经是数量级的差距了。

我们其实可以把这个观点扩展开,使用原始数据类型、数组甚至本地代码实现等,在性能极度敏感的场景往往具有比较大的优势,用其替换掉包装类、动态数组(如 ArrayList)等可以作为性能优化的备选项。一些追求极致性能的产品或者类库,会极力避免创建过多对象。当然,在大多数产品代码里,并没有必要这么做,还是以开发效率优先。

 

2. 源码分析

整体看一下 Integer 的职责,它主要包括各种基础的常量,比如最大值、最小值、位数等;前面提到的各种静态工厂方法 valueOf();获取环境变量数值的方法;各种转换方法,比如转换为不同进制的字符串,如 8 进制,或者反过来的解析方法等。

首先,继续深挖缓存,Integer 的缓存范围虽然默认是 -128 到 127,但是在特别的应用场景,比如我们明确知道应用会频繁使用更大的数值,这时候应该怎么办呢?

缓存上限值实际是可以根据需要调整的,JVM 提供了参数设置:

-XX:AutoBoxCacheMax=N

第二,我们在分析字符串的设计实现时,提到过字符串是不可变的,保证了基本的信息安全和并发编程中的线程安全。如果你去看包装类里存储数值的成员变量“value”,你会发现,不管是 Integer 还 Boolean 等,都被声明为“private final”,所以,它们同样是不可变类型!

想象一下这个应用场景,比如 Integer 提供了 getInteger() 方法,用于方便地读取系统属性,我们可以用属性来设置服务器某个服务的端口,如果我可以轻易地把获取到的 Integer 对象改变为其他数值,这会带来产品可靠性方面的严重问题。

第三,Integer 等包装类,定义了类似 SIZE(int SIZE = 32) 或者 BYTES(int BYTES = SIZE / Byte.SIZE)这样的常量,这反映了什么样的设计考虑呢?移植对于 Java 来说相对要简单些,因为原始数据类型是不存在差异的,这些明确定义在Java 语言规范里面,不管是 32 位还是 64 位环境,开发者无需担心数据的位数差异,可以做到宣称的“一次书写,到处执行”,应用开发者更多需要考虑的是容量、能力等方面的差异。

 

3. 原始类型线程安全

前面提到了线程安全设计,你有没有想过,原始数据类型操作是不是线程安全的呢?

这里可能存在着不同层面的问题:

原始数据类型的变量,显然要使用并发相关手段,才能保证线程安全,这些我会在专栏后面的并发主题详细介绍。如果有线程安全的计算需要,建议考虑使用类似 AtomicInteger、AtomicLong 这样的线程安全类。

特别的是,部分比较宽的数据类型,比如 float、double,甚至不能保证更新操作的原子性,可能出现程序读取到只更新了一半数据位的数值!

 

4.Java 原始数据类型和引用类型局限性

前面我谈了非常多的技术细节,最后再从 Java 平台发展的角度来看看,原始数据类型、对象的局限性和演进。

对于 Java 应用开发者,设计复杂而灵活的类型系统似乎已经习以为常了。但是坦白说,毕竟这种类型系统的设计是源于很多年前的技术决定,现在已经逐渐暴露出了一些副作用,例如:

原始数据类型和 Java 泛型并不能配合使用

这是因为 Java 的泛型某种程度上可以算作伪泛型,它完全是一种编译期的技巧,Java 编译期会自动将类型转换为对应的特定类型,这就决定了使用泛型,必须保证相应类型可以转换为 Object。

无法高效地表达数据,也不便于表达复杂的数据结构,比如 vector 和 tuple

我们知道 Java 的对象都是引用类型,如果是一个原始数据类型数组,它在内存里是一段连续的内存,而对象数组则不然,数据存储的是引用,对象往往是分散地存储在堆的不同位置。这种设计虽然带来了极大灵活性,但是也导致了数据操作的低效,尤其是无法充分利用现代 CPU 缓存机制。

Java 为对象内建了各种多态、线程安全等方面的支持,但这不是所有场合的需求,尤其是数据处理重要性日益提高,更加高密度的值类型是非常现实的需求。

你可能感兴趣的:(java基础)