Elastic-Job原理--任务分片策略(三)

上一篇博客Elastic-Job原理--服务器初始化、节点选举与通知(二)介绍了Elastic-Job的启动流程,这篇博客我们了解学习一下Elastic-Job的任务分片策略,目前提供了三种任务分片策略,分片策略的实现最终是在注册中心zk中在分片的instance中写入实例信息。

Elastic-Job原理--任务分片策略(三)_第1张图片

目前Elastic-Job提供分片接口JobShardingStrategy:

/**
 * 作业分片策略.
 * 
 * @author zhangliang
 */
public interface JobShardingStrategy {
    
    /**
     * 作业分片.
     * 
     * @param jobInstances 所有参与分片的单元列表
     * @param jobName 作业名称
     * @param shardingTotalCount 分片总数
     * @return 分片结果
     */
    Map> sharding(List jobInstances, String jobName, int shardingTotalCount);
}

目前有如下实现类:

Elastic-Job原理--任务分片策略(三)_第2张图片

(1)AverageAllocationJobShardingStrategy:基于平均分配算法的分片策略.

 如果分片不能整除, 则不能整除的多余分片将依次追加到序号小的服务器.
 如: 
 1. 如果有3台服务器, 分成9片, 则每台服务器分到的分片是: 1=[0,1,2], 2=[3,4,5], 3=[6,7,8].
  2. 如果有3台服务器, 分成8片, 则每台服务器分到的分片是: 1=[0,1,6], 2=[2,3,7], 3=[4,5].
  3. 如果有3台服务器, 分成10片, 则每台服务器分到的分片是: 1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8].

/**
 * 基于平均分配算法的分片策略.
 * 
 * 

* 如果分片不能整除, 则不能整除的多余分片将依次追加到序号小的服务器. * 如: * 1. 如果有3台服务器, 分成9片, 则每台服务器分到的分片是: 1=[0,1,2], 2=[3,4,5], 3=[6,7,8]. * 2. 如果有3台服务器, 分成8片, 则每台服务器分到的分片是: 1=[0,1,6], 2=[2,3,7], 3=[4,5]. * 3. 如果有3台服务器, 分成10片, 则每台服务器分到的分片是: 1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8]. *

* * @author zhangliang */ public final class AverageAllocationJobShardingStrategy implements JobShardingStrategy { @Override public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) { if (jobInstances.isEmpty()) { return Collections.emptyMap(); } Map> result = shardingAliquot(jobInstances, shardingTotalCount); addAliquant(jobInstances, shardingTotalCount, result); return result; } //根据整除规则,将整除后的数据进行分配 private Map> shardingAliquot(final List shardingUnits, final int shardingTotalCount) { Map> result = new LinkedHashMap<>(shardingTotalCount, 1); int itemCountPerSharding = shardingTotalCount / shardingUnits.size(); int count = 0; for (JobInstance each : shardingUnits) { List shardingItems = new ArrayList<>(itemCountPerSharding + 1); for (int i = count * itemCountPerSharding; i < (count + 1) * itemCountPerSharding; i++) { shardingItems.add(i); } result.put(each, shardingItems); count++; } return result; } //无法整除分片的数据,依次追加到实例中 private void addAliquant(final List shardingUnits, final int shardingTotalCount, final Map> shardingResults) { int aliquant = shardingTotalCount % shardingUnits.size(); int count = 0; for (Map.Entry> entry : shardingResults.entrySet()) { if (count < aliquant) { entry.getValue().add(shardingTotalCount / shardingUnits.size() * shardingUnits.size() + count); } count++; } } }

(2)OdevitySortByNameJobShardingStrategy:根据作业名的哈希值奇偶数决定IP升降序算法的分片策略.

首先 作业名的哈希值为奇数则IP升序. 作业名的哈希值为偶数则IP降序.然后再调用AverageAllocationJobShardingStrategy的平均分片算法进行分片。

/**
 * 根据作业名的哈希值奇偶数决定IP升降序算法的分片策略.
 * 
 * 

* 作业名的哈希值为奇数则IP升序. * 作业名的哈希值为偶数则IP降序. * 用于不同的作业平均分配负载至不同的服务器. * 如: * 1. 如果有3台服务器, 分成2片, 作业名称的哈希值为奇数, 则每台服务器分到的分片是: 1=[0], 2=[1], 3=[]. * 2. 如果有3台服务器, 分成2片, 作业名称的哈希值为偶数, 则每台服务器分到的分片是: 3=[0], 2=[1], 1=[]. *

* * @author zhangliang */ public final class OdevitySortByNameJobShardingStrategy implements JobShardingStrategy { private AverageAllocationJobShardingStrategy averageAllocationJobShardingStrategy = new AverageAllocationJobShardingStrategy(); @Override public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) { long jobNameHash = jobName.hashCode(); if (0 == jobNameHash % 2) { Collections.reverse(jobInstances); } return averageAllocationJobShardingStrategy.sharding(jobInstances, jobName, shardingTotalCount); } }

(3)RotateServerByNameJobShardingStrategy:根据作业名的哈希值对服务器列表进行轮转的分片策略.

/**
 * 根据作业名的哈希值对服务器列表进行轮转的分片策略.
 * 
 * @author weishubin
 */
public final class RotateServerByNameJobShardingStrategy implements JobShardingStrategy {
    
    private AverageAllocationJobShardingStrategy averageAllocationJobShardingStrategy = new AverageAllocationJobShardingStrategy();
    
    @Override
    public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) {
        return averageAllocationJobShardingStrategy.sharding(rotateServerList(jobInstances, jobName), jobName, shardingTotalCount);
    }
    
    private List rotateServerList(final List shardingUnits, final String jobName) {
        int shardingUnitsSize = shardingUnits.size();
        int offset = Math.abs(jobName.hashCode()) % shardingUnitsSize;
        if (0 == offset) {
            return shardingUnits;
        }
        List result = new ArrayList<>(shardingUnitsSize);
        for (int i = 0; i < shardingUnitsSize; i++) {
            int index = (i + offset) % shardingUnitsSize;
            result.add(shardingUnits.get(index));
        }
        return result;
    }
}

总结:总体上使用的还是平均分片算法,不过是将实例进行了不同的排序操作。

你可能感兴趣的:(分布式任务框架,分布式任务调度框架)