- 异常GPT:使用LVLMs检测工业异常
DUT_LYH
gpt人工智能算法
AnomalyGPT:利用LVLMs进行工业异常检测摘要本文介绍了一种名为AnomalyGPT的新型工业异常检测方法,该方法基于大型视觉语言模型(LVLMs)。AnomalyGPT能够检测并定位图像中的异常,无需手动设置阈值。此外,AnomalyGPT还可以提供与图像相关的详细信息,以交互方式与用户进行交流。本文详细阐述了AnomalyGPT的模型架构、解码器、提示学习器以及异常模拟方法,并在Vi
- PyTorch 实现图像卷积和反卷积操作及代码
算法channel
pytorch人工智能python深度学习机器学习
你好,我是郭震在深度学习中,尤其是在处理图像相关任务时,卷积和反卷积(转置卷积)都是非常核心的概念。它们在神经网络中扮演着重要的角色,但用途和工作原理有所不同。以下是对传统卷积和反卷积的介绍,以及它们在PyTorch中的应用示例。传统卷积(nn.Conv2d)用途传统卷积通常用于特征提取。在处理图像时,通过应用卷积核(也称为滤波器)来扫描输入图像或特征映射,可以有效地识别图像中的局部特征(如边缘、
- 基于matlab的相关模板图像匹配技术
简单光学
MATLABmatlab图像匹配相关模板匹配缺陷识别
一理论基础基于相关的模板匹配技术可直接⽤于在⼀幅图像中寻找某种⼦图像模式。图像相关的基本概念是:对于⼤⼩为M×N的图像f(x,y)和⼤⼩为J×K的⼦图像模式w(x,y),f与w的相关可表示为:c(x,y)=∑s=0K∑t=0Jw(s,t)f(x+s,y+t)c\left(x,y\right)=\sum\limits_{s=0}^{K}{\sum\limits_{t=0}^{J}{w\left(s,
- 目标检测教程视频指南大全
魔鬼面具
目标检测音视频人工智能
魔鬼面具-哔哩哔哩视频指南必看干货系列(建议搞深度学习的小伙伴都看看,特别是图像相关)深度学习常见实验问题与实验技巧(适用于所有模型,小白初学者必看!)还在迷茫深度学习中的改进实验应该从哪里开始改起的同学,一定要进来看看了!用自身经验给你推荐实验顺序!探究深度学习中预训练权重对改进和精度的影响!什么?你说你不会画模型结构图?行吧,那你进来看看吧,手把手教你画YAML结构图!探究深度学习中训练中的可
- opencv案例实战:表格修复
艾醒(AiXing-w)
零基础上手计算机视觉项目opencv人工智能计算机视觉
OpenCV表格修复前言案例读取图像高斯滤波二值化分离表格行和列还原结果优化获取表格框画出矩形框获取图像相关数据根据矩形框裁剪前言在对于图标的扫描问题当中,有些时候会遇到扫描的表格缺失的问题,通过OpenCV中的形态学变换(morphologyEx)实现对于表格的修复。案例假设我们这里有一张表,可以看到第二行和第二列的表格有些缺少,我们的任务是将这些表格补全。
- 如何用 Canvas 实现 PS 的液化功能
最近在做业务需求时,需要实现对图片的液化功能,类似于美图秀秀的瘦脸功能。这已经不仅是图片缩放、拖动、剪裁这类对图片整体的操作了,而是需要对图片的像素进行一系列的计算和修改,那么该怎么实现这个功能呢?基础知识在进入正题之前,我们先来了解一些数字图像处理和Canvas的基础知识。图像处理里的像素是什么现实世界中,人眼直接看到的图像或者在相机中拍摄到的影像,这类图片的最大特点是图像相关的物理量变化是连续
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 如何用 Canvas 实现 PS 的液化功能
最近在做业务需求时,需要实现对图片的液化功能,类似于美图秀秀的瘦脸功能。这已经不仅是图片缩放、拖动、剪裁这类对图片整体的操作了,而是需要对图片的像素进行一系列的计算和修改,那么该怎么实现这个功能呢?基础知识在进入正题之前,我们先来了解一些数字图像处理和Canvas的基础知识。图像处理里的像素是什么现实世界中,人眼直接看到的图像或者在相机中拍摄到的影像,这类图片的最大特点是图像相关的物理量变化是连续
- 缓存位图
鹿小纯0831
注意:对于大多数情况,我们建议您使用Glide库来获取,解码和显示应用中的位图。Glide在处理与在Android上使用位图和其他图像相关的这些和其他任务时,大部分复杂性都是抽象的。有关使用和下载Glide的信息,请访问GitHub上的Glide存储库。将单个位图加载到用户界面(UI)中非常简单,但是如果需要一次加载更多的图像,事情会变得更加复杂。在许多情况下(例如使用ListView,GridV
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 算法大览:24美赛深度总结与代码分享
小Z的科研日常
数学建模python
为协助参与美赛的同仁,本期我们特别对一系列相关算法进行深度总结。内容包括数据降维、聚类、论文写作、异常值检测、论文配图、图像相关算法以及机器学习自动化预测等多个主题,其中包含详实的案例和实用的代码示例。最后,祝大家取得好成绩!PS:关注公众号[小Z的科研日常],阅读号内原文免费获取[相关代码]。数据降维降维|基于PCA算法降维|基于KPCA算法【数据+代码】Lasso特征选择离散和连续数据的降维方
- 初学者在Python中的基本图像处理库 - OpenCV和imutils
小北的北
python图像处理opencv开发语言人工智能
处理图像处理和操作的最常用的库之一是Python的OpenCV。对于图像分类、目标检测或光学字符识别,在人工智能领域与图像相关的任何工作大多数时候都需要某种形式的图像处理和操作。在本教程中,我们将专注于OpenCV的一些基本功能。这些功能基础且有时非常有用。我们将通过示例学习它们。在开始之前,这是我们今天将要使用的库。importcv2importmatplotlib.pyplotasplt我们将
- python xy坐标轴刻度一致_Python在xy坐标系上绘制多幅图像
徐晨松
pythonxy坐标轴刻度一致
给定一组图像,以及与每个图像相关联的(x,y)坐标,我想为这组图像创建一个“合成”图,每个都在它的(x,y)坐标处。在例如,给定以下集合,其中列表中的每个项都是(x,y,image)元组:images=[(0,0,'image1.jpg'),(0,1,'image2.jpg'),(1,0,'image3.jpg)]我想创建一个绘图,其中与image1.jpg对应的图像在坐标(0,0)处的x-y图上
- 【音视频原理】图像相关概念 ② ( 帧率 | 常见帧率标准 | 码率 | 码率单位 )
韩曙亮
音视频原理音视频帧率码率fpsMbps帧率标准图像
文章目录一、帧率1、帧率简介2、常见帧率标准3、帧率=刷新率二、码率1、码率简介2、码率单位一、帧率1、帧率简介帧率FrameRate,帧指的是是画面帧,帧率是画面帧的速率;帧率的单位是FPS,FramesPerSecond,是每秒钟的画面帧个数;帧率是动画/电影/游戏的每秒钟的画面数,用于测量视频的信息数量;帧率越高,视频信息数量越多;帧率与流畅度相关,帧率越高,流畅度越高,需要的设备性能越高;
- 【音视频原理】图像相关概念 ③ ( RGB 色彩简介 | RGB 排列 | YUV 色彩简介 | YUV 编码好处 )
韩曙亮
音视频原理音视频图像RGBYUV颜色通道灰度值色度
文章目录一、RGB色彩1、RGB色彩简介2、RGB排列二、YUV色彩1、YUV色彩简介2、YUV编码好处一、RGB色彩1、RGB色彩简介RGB是计算机中的颜色编码方法,红(R)/绿(G)/蓝(B)三个颜色通道可以设置不同的值,每个通道的颜色值都可以取值0~255,这样三个通道叠加,可以表示出2563=16777216256^3=167772162563=16777216种颜色值;红(R)/绿(G)
- 多模态Multimodal医学图像相关论文
哥廷根数学学派
cnn人工智能神经网络深度学习算法
Survey[arXiv2022]VisualAttentionMethodsinDeepLearning:AnIn-DepthSurvey[pdf][arXiv2022]Vision+X:ASurveyonMultimodalLearningintheLightofData[pdf][arXiv2023]VisionLanguageModelsforVisionTasks:ASurvey[pdf
- 【python】15.图像和办公文档处理
九五一
python随心记python计算机视觉人工智能
图像和办公文档处理用程序来处理图像和办公文档经常出现在实际开发中,Python的标准库中虽然没有直接支持这些操作的模块,但我们可以通过Python生态圈中的第三方模块来完成这些操作。操作图像计算机图像相关知识颜色。如果你有使用颜料画画的经历,那么一定知道混合红、黄、蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是被我们称为美术三原色的东西,它们是不能再分解的基本颜色。在计算机中,我们可以将红、绿
- DICOM体位信息说明
优视魔方
医学影像基础经验分享
DICOM数据方向DICOM中定义了一个以病人为基础的坐标系①,该坐标系是笛卡尔空间直角坐标系。DICOM中的跟图像相关的字段为:[0010,2210](AnatomicalOrientationType)=BIPED二足动物(默认)=QADRUPED四足动物以人举例,标准定义的方向是+X右肩膀到左肩膀+Y前胸到后背+Z足到头由此可知,该坐标系是右手坐标系。[7FE0,0010](PixelDat
- 10X空间转录组Visium || 空间位置校准
周运来就是我
SpaceRanger10X公司提供两款空间转录组软件,和单细胞对应的软件很相似,最大区别在于增加了空间信息的可视化。那么,如何将空间信息准确定位以及如何将基因表达量准确mapping到空间信息中呢?SpaceRanger结合LoupeBrowser?给出了一套解决方案。成像算法SpaceRanger依靠图像处理算法来解决与玻片(slide)图像相关的两个关键问题:确定组织位置校准基准点需要组织检
- 【深度学习】从0到完整项目第1篇:深度学习第一个案例(代码文档已分享)
程序员一诺
深度学习python笔记深度学习人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)
tangjunjun-owen
目标检测YOLOmap指标通用模块基于yolov5模型应用目标检测
提示:通用map指标框架代码介绍,并基于yolo模型应用map指标计算代码解读文章目录前言一、map模块整体认识二、map计算应用代码解读三、通用map计算指标代码解读四、基于yolov5使用通用map计算指标代码解读1、通用map指标计算模块整体结构说明2、参数构建3、数据准备4、模型初始化5、map指标计算函数(computer_main)代码解读①、获得图像相关路径及指标计算函数初始化②、获
- 1、aigc图像相关
爱补鱼的猫猫
AigcAIGC
aigc图像相关一、Diffusionwebui在autodl上部署一些问题二、lora和kohyass(1)角色模型(2)风格模型(3)dreambooth(4)模型合并(5)Lora加Adetail其他三、sdapi四、ai视频模型五、换脸六、voice2face七、clash代理八、3090、cuda和tensorflow1.x八、Nvidia显卡驱动、CUDA、cuDNN、Anaconda
- 文本生成精准图像字幕,谷歌等开源PixelLLM
RPA中国
机器人
传统的大语言模型可以描述、回答与图像相关的问题,甚至进行复杂的图像推理。但使用大型语言模型进行文本定位,或用图像指代准确坐标却不太行。为了进行该技术的探索,谷歌和加州大学圣地亚哥分校的研究人员开发了像素对齐大语言模型——PixelLLM。PixelLLM可以将图像位置信息作为输入或输出。当将位置作为输入时,模型可以根据位置生成与指定对象或区域相关的描述文本。当生成位置作为输出时,模型可以为每个输出
- 文本生成精准图像字幕,谷歌等开源PixelLLM
RPA中国
microsoftcopilot
传统的大语言模型可以描述、回答与图像相关的问题,甚至进行复杂的图像推理。但使用大型语言模型进行文本定位,或用图像指代准确坐标却不太行。为了进行该技术的探索,谷歌和加州大学圣地亚哥分校的研究人员开发了像素对齐大语言模型——PixelLLM。PixelLLM可以将图像位置信息作为输入或输出。当将位置作为输入时,模型可以根据位置生成与指定对象或区域相关的描述文本。当生成位置作为输出时,模型可以为每个输出
- 图片搜索/图片相似度计算学习笔记(2019-12-20-v1)
李日新
今天下午抽空补充学习了一下图片相似度计算的原理和技术,主要用于以图搜图的应用场景。这里简短的总结一下。后续可能会继续更新补充。一、图片搜索问题的基本步骤与原理(1)把1幅图像经过特征提取技术量化成一组高维向量(如2048维)(2)通过大规模向量搜索引擎支持大规模图像搜索(3)识别出图像相关信息(4)继续做一些细粒度的图像识别与分析,检索出相似的图片进行推荐。二、图片搜索问题的分类(1)根据文字
- 图像相关知识点及属性介绍
图灵追慕者
计算机视觉图像信息图像属性工业相机
图像常用属性指标图像的常用属性指标有以下几个:分辨率分辨率是指图像中可以显示的水平和垂直像素数。较高的分辨率意味着图像具有更多的细节和更高的清晰度。常用单位有像素(px)或者万像素(MP)。色彩深度色彩深度是指图像中每个像素可以表示的不同颜色数量。它决定了图像的颜色范围和细节。常用的色彩深度包括8位(256种颜色)、16位(65536种颜色)和24位(16777216种颜色)等。像素密度像素密度是
- Python OpenCV获取视频
有理叔
PythonPythonOpenCV
之前有文章,使用Android平台的OpenCV接入了视频,控制的目标是手机的摄像头,这是OpenCV的好处,使用OpenCV可以使用跨平台的接口实现相同的功能,减少了平台间移植的困难。正如本文后面,将使用类似的接口,从笔记本的摄像头获取视频,所以,尝试本文代码需要有一台有摄像头的电脑。不过,需要说明的的是,OpenCV的强项在于图像相关的处理,而不是视频的编解码,所以,不要使用OpenCV做多余
- 图像融合——现有比较火的网络
Keep forward upup
图像图像处理
在深度学习中,用于图像融合的详细网络(深度神经网络)通常是为了学习如何结合来自多个源的信息以生成一个单一、增强的输出图像。这些网络可以基于不同的架构设计,下面是一些常用于图像融合任务的深度学习网络类型:卷积神经网络(CNNs):常用于图像相关任务,因为它们可以有效地处理像素数据并提取空间特征。用于图像融合时,CNN可以设计成多输入网络,分别处理不同的图像源,然后在某一层或多层融合这些特征。生成对抗
- 3.PyTorch——常用神经网络层
沉住气CD
PyTorch神经网络人工智能深度学习pytorch
importnumpyasnpimportpandasaspdimporttorchastfromPILimportImagefromtorchvision.transformsimportToTensor,ToPILImaget.__version__'2.1.1'3.1图像相关层图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可分为一维(1D)、二维(2D)、三维
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不